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Abstract
Genus Artemisia has diverse phytochemistry and a long history in traditional medicine with several species still 
having unexplored potential. Hence, comparative profiling of Artemisia species in Egypt (A. annua, A. herba-alba, 
A. monosperma and A. judaica) and their authentication is of great interest. An integrated approach of GC-MS, 
HPTLC-image analysis and near-infrared (NIR) spectroscopy was implemented for their fingerprinting, discrimination 
and authentication. GC-MS analysis revealed the phytochemical profile of their volatile oils identifying compounds 
spanning monoterpenes, sesquiterpenes, diterpenes and non-terpenoid compounds. The major chemical 
components were highlighted as camphor, β-caryophyllene and germacrene D in A. annua, camphene, cis-
pinocarveol, trans-chrysanthenyl acetate and cis-chrysanthenyl acetate in A. herba-alba, α-pinene, β-pinene, 
α-terpinolene and (-)-spathulenol in A. monosperma, finally, camphor, piperitone and trans-ethyl cinnamate in 
A. judaica. HPTLC-image analysis allowed tracking chemical markers in their total alcoholic extracts. Artemisinin 
was detected only in A. annua while scopoletin was identified as a major characteristic coumarin in Artemisia 
species. Phenolic acids and flavonoids were also discovered in the different species. Finally, NIR spectroscopy 
allowed profiling and authentication of their powders revealing prominent spectral characteristics correlated to 
the chemical markers identified by GC-MS and HPTLC. Then, multivariate analysis facilitated classification and 
discrimination of the species. Additionally, PLS regression analysis was utilized for quality control of powdered A. 
annua, being an important industrial crop, by detecting its adulteration with other species in limits of detection 
less than 1.5%. This combined approach aided in the rapid comparative profiling of the Artemisia species as a mean 
for their fingerprinting and authentication.
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Introduction
Genus Artemisia is one of the biggest and most uni-
versally distributed genera of family Astraceae (Com-
positae), constituting over 500 different species, that 
are spread worldwide in the temperate zones of Europe, 
Africa, Asia and North America. The genus is known 
for its diverse phytochemical constituents with a wide 
range of medicinal effects. Genus Artemisia has a long 
history in traditional medicine and many of its species 
still have unexplored potential [1]. The most famous of 
Artemisia species is Artemisia annua L. (sweet worm-
wood or qinghao in China), widely used in folk medicine 
for treatment of chills and fevers. The sesquiterpene lac-
tone, artemisinin, was later isolated from A. annua and 
identified for its antimalarial activity. Artemisinin-based 
Combination Therapy (ACT) is recommended by the 
World Health Organization (WHO) as the first line treat-
ment for malaria. In addition, artemisinin garnered inter-
est for its anticancer properties as of the past decade. A. 
annua is renowned worldwide and cultivated in various 
regions for its artemisinin content. It is especially impor-
tant in Africa were malaria is prevalent [2, 3]. Among the 
promising species of genus Artemisia, Artemisia herba-
alba Asso, Artemisia monosperma Del. and Artemisia 

judaica L. are wild species growing in Egyptian deserts 
and sandy Mediterranean regions, and are known for 
their traditional uses in many cultures [4]. A. herba-alba, 
given the name of desert wormwood in English and Shih 
in Arabic, is traditionally used as anti-spasmodic, anthel-
mintic, anti-inflammatory and for wound healing [5, 6], 
in addition to its antibacterial and antifungal properties 
[7]. A. monosperma is used in folk medicine for gastroin-
testinal disorders, fever, hypertension and diabetes [8, 9]. 
Finally, A. judaica, “Shih balady” in Arabic, is known as a 
restorative plant in traditional medicine used to improve 
vision, enhance immunity and cardiovascular health [10, 
11]. Additionally, essential oils of genus Artemisia exhibit 
broad spectrum of activities including antiseptic, fungi-
cidal and antibacterial activities owing to the lipophilic 
property of their components. They also display analge-
sic, anti-inflammatory, antispasmodic and local anes-
thetic effects [12]. The medicinal potential of Artemisia 
species prompted research interest into their chemical 
profiles.

The aim of this article is the comparative phyto-
chemical profiling of the volatile oils, total extracts 
and plant powders of the aerial parts of A. annua, A. 
herba-alba, A. monosperma and A. judaica using gas 
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chromatography-mass spectrometry (GC-MS), high-per-
formance thin-layer chromatography (HPTLC) and near 
infrared (NIR) spectroscopy coupled with multivariate 
analysis for their classification, identification and authen-
tication. Since A. annua is an important industrial crop 
that is usually cultivated for its artemisinin content, it is 
essential to ensure its purity and avoid adulteration with 
other Artemisia species. Hence, NIR spectroscopy was 
also used to differentiate the four species and for quality 
control of A. annua.

Results and discussion
Comparative evaluation of the volatile oils of Artemisia 
species
Whitish to yellowish volatile oils with strong pleasant 
odor were extracted from the aerial parts of A. annua, A. 
herba-alba, A. monosperma and A. judaica with a yield of 
0.8%, 1%, 1.12% and 1.2%, respectively. This revealed that 
A. judaica yielded the highest amount of oil followed by 
A. monosperma and A. herba-alba then finally A. annua 
with the lowest yield. The qualitative and quantitative 
composition of the volatile oils were investigated using 
GC-MS, chromatograms shown in Fig. S1, where a total 
of 92 compounds were identified; 48 in A. annua, 43 in 
A. herba-alba, 44 in A. monosperma and 48 in A. judaica. 
The identified compounds are listed in Table 1 by order 
of their elution on TG-5MS column.

The identified compounds from the volatile oils of A. 
annua, A. herba-alba, A. monosperma and A. judaica 
constituted 99.79, 98.89, 98.14 and 99.82% of the total 
mass, respectively. The classes of the identified com-
pounds were denoted as monoterpenes and sesquiter-
penes, including hydrocarbons or oxygenated terpenes, 
as well as non-terpenoid compounds (Fig. S2). Monoter-
penes were the predominant class in the volatile oils of 
the four species especially A. herba-alba. In addition to 
the high content of monoterpenes, the other three spe-
cies also revealed high amount of sesquiterpenes. Mono-
terpenes constituted 89.48% of the chemical profile of A. 
herba-alba oil with 26% monoterpene hydrocarbons and 
63.48% oxygenated monoterpenes. On the other hand, 
the chemical profile of the volatile oil of A. annua was 
mainly composed of 52.27% monoterpenes, of which 
45.08% were oxygenated, and 46.35% sesquiterpenes 
with hydrocarbons representing 38.91%. Monoterpenes 
were also the prevalent class in A. monosperma and A. 
judaica as 64.76% and 62.87%, respectively. However, A. 
monosperma mainly possessed monoterpene hydrocar-
bons (59.58%) while A. judaica volatile oil majorly had 
oxygenated monoterpenes (57.04%). Both volatile oils 
also contained 32.37 and 22.94% of sesquiterpenes. In 
addition, non-terpenoid compounds constituted 13.6% 
of A. judaica oil. Another study on Egyptian Artemisia 
species reported that oxygenated monoterpenes were 

the significant category in A. herba-alba (75.31%) and 
A. judaica (83.07%), whereas monoterpene hydrocar-
bons were the major category in A. monosperma (36.23%) 
followed by oxygenated sesquiterpenes (37.08%) [13]. 
This agrees with our findings concerning the three spe-
cies, however we reported lower content of oxygenated 
monoterpenes in A. judaica with higher amounts of ses-
quiterpenes and non-terpenoid compounds. The volatile 
oil of A. annua collected from India was characterized by 
65.7% monoterpenes and 27.3% sesquiterpenes [14], sim-
ilarly the oils from the plants cultivated in Italy and Korea 
were rich in mono- and sesquiterpenes [15, 16]. This is 
in accordance with our analysis of the volatile oil of A. 
annua cultivated in Egypt.

Among the predominant monoterpenes in A. 
herba-alba oil, camphene (9.03%), sabinene (4.88%), 
cis-pinocarveol (22.6%), cis-piperitol (4.12%), trans-chry-
santhenyl acetate (13.88%) and cis-chrysanthenyl ace-
tate (9.35%) were the major constituents, which slightly 
differs from previous report of the Egyptian species 
[13]. Camphene, sabinene, chrysanthenone and chry-
santhenyl acetate were previously reported in A. herba-
alba from Morocco [7, 17], Libya [18], Algeria [19] and 
Tunisia [20].Trans-pinocarveol was previously reported 
as a major compound in the volatile oil of Algerian A. 
herba-alba [21] and in lower amount in the Libyan plant 
[18]. Although camphor and thujones were found in 
high amounts in the Algerian [21–24], Tunisian [20, 25, 
26] and Moroccan [7, 27] plant, they are present in low 
amount in the Egyptian A. herba-alba. Monoterpene 
hydrocarbons, α-pinene (9.39%), β-pinene (13.95%), 
β-Myrcene (5.28%), limonene (5.42%) and α-terpinolene 
(13.61%) along with the oxygenated sesquiterpene 
(-)-spathulenol (11.71%) constituted the major compo-
nents of A. monosperma oil. This closely matches previ-
ous reports of Egyptian and Saudi Arabian plants [13, 28, 
29].

Camphor is a major constituent in the volatile oils of 
both A. annua (26.45%) and A. judaica (23.19%). In 
addition to camphor, A. annua oil depicted high lev-
els of β-caryophyllene (17.75%), germacrene D (9.81%), 
trans-β-farnesene (5.72%), 1,8-cineole (5.33%) and arte-
misia ketone (3.02%). This is consistent with A. annua 
cultivated in Italy [15, 30] and Korea [16] except for the 
lower levels of artemisia ketone in the Egyptian plant. As 
for A. judaica, along with camphor, piperitone (17.14%), 
trans-ethyl cinnamate (12.65%) and 1,8-Cineole (4.54%) 
represented major components of the oil. This corre-
sponds with previous investigations of the volatile oil of 
A. judaica from Egypt [13, 31], Algeria [21, 32], Jordan 
[33], Saudi Arabia [34] and Libya [18].

The volatile oil compositions of the studied Artemisia 
species mostly correspond with previous investigations 
in Egypt and other countries. However, variations in the 



Page 4 of 17Abdallah et al. BMC Chemistry          (2025) 19:100 

No. Compounds Rt RI A. 
annua

A. 
herba-alba

A. 
monosperma

A. 
judaica

1 Santolina Triene 7.44 911 - 0.53 - -
2 α-thujene 8.03 929 0.19 0.15 0.65 0.16
3 α-pinene 8.1 933 0.54 3.27 9.39 0.45
4 Camphene 8.55 947 1.15 9.03 - 1.01
5 Thuja-2,4(10)-diene 8.81 954 - 0.87 - -
6 Sabinene 9.37 972 1.54 4.88 - 1.27
7 β-pinene 9.73 984 0.24 0.41 13.95 0.22
8 β-Myrcene 9.9 989 0.46 0.66 5.28 0.37
9 Yomogi Alcohol 10.14 998 0.44 1.92 - 0.37
10 α-phellandrene 10.24 1001 - - 0.74 -
11 δ-3-carene 10.31 1004 - - 1.74 0.18
12 α-terpinene 10.69 1015 0.29 2.26 - -
13 P-cymene 10.93 1022 2.23 2.55 - 1.77
14 trans-2,7-Dimethyl-4,6-octadien-2-ol 11.01 1025 - 1.82 - -
15 Limonene 11.1 1028 - - 5.42 -
16 1,8-Cineole (Eucalyptol) 11.19 1031 5.33 3.61 - 4.54
17 Cis-β-Ocimene 11.42 1038 - - 4 -
18 7-Methylbicyclo [2.2.1] hept-5-en-2-one 11.43 1039 - 0.7 - -
19 Trans-β-Ocimene 11.72 1047 - - 3.59 0.4
20 γ-Terpinene 11.98 1056 0.55 1.39 1.21 -
21 Artemisia ketone 12.13 1061 3.02 - - 2.54
22 Artemisia Alcohol 12.69 1079 0.55 0.51 - 0.47
23 α-terpinolene 12.85 1084 - - 13.61 -
24 Linalool 13.31 1098 0.38 - - 0.29
25 α-thujone 13.51 1105 0.86 2.17 - 0.61
26 β-thujone 13.77 1113 - 0.24 - -
27 Chrysanthenone 13.96 1120 - 0.52 0.14 -
28 Cis-Verbenol 14.25 1129 - 0.3 - -
29 Trans-p-2-Menthen-1-ol 14.26 1129 - - 0.3 -
30 Camphor 14.64 1142 26.45 0.49 - 23.19
31 Lavandulol 15.25 1162 0.42 0.21 - 0.41
32 Borneol 15.31 1163 3.91 0.27 - 3.84
33 Terpinen-4-ol 15.62 1173 1.09 0.17 1.55 1.13
34 Cis-Pinocarveol 15.95 1183 - 22.6 - -
35 α-terpineol 16.21 1191 0.2 0.13 0.17 0.23
36 Myrtenol 16.43 1198 - 1.05 - -
37 Cis-piperitol 16.5 1200 - 4.12 - -
38 n-Decanal 17.2 1223 - - 0.37 -
39 Dihydrocarvone 17.65 1237 0.18 - - -
40 Verbenone 18.5 1264 0.66 - - -
41 Linalyl acetate 18.58 1267 - - 0.21 0.63
42 p-cymen-9-ol 18.67 1270 0.74 - 0.29 0.77
43 Thymol 19.1 1284 0.66 - 2.27 0.7
44 Trans-Chrysanthenyl acetate 19.61 1300 - 13.88 - -
45 Cuminaldehyde 19.84 1307 0.19 0.12 - 0.16
46 Cis-Chrysanthenyl acetate 20.36 1324 - 9.35 0.33 -
47 Piperitone 20.45 1327 - - - 17.14
48 α-Copaene 22.34 1387 0.83 - - 0.9
49 β-Cubebene 22.45 1391 0.22 - - 0.26
50 β-Elemene 22.76 1400 0.44 0.77 0.62 0.34
51 Cyperene 22.97 1407 - 0.37 - -
52 Cis-threo-Davanafuran 23.38 1420 - - 1.06 -

Table 1 Chemical profiles of the volatile oils of A. annua, A. herba-alba, A. monosperma and A. judaica
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No. Compounds Rt RI A. 
annua

A. 
herba-alba

A. 
monosperma

A. 
judaica

53 β-Caryophyllene 23.62 1428 17.75 0.33 0.19 -
54 Geranyl acetone 24.08 1443 - - 0.25 -
55 α-Humulene 24.32 1450 0.42 - 0.13 0.37
56 Trans-β-Farnesene 24.59 1459 5.72 - - 6.87
57 α-curcumene 25.12 1476 - - 2.78 -
58 Cis-muurola-4(14),5-diene 25.23 1479 - 1.15 - -
59 Trans-Ethyl cinnamate 25.24 1480 - - - 12.65
60 Germacrene D 25.28 1483 9.81 - 2.04 -
61 α-Selinene 25.39 1487 2.88 - - 4.04
62 β-Bisabolene 25.53 1492 - - - 0.81
63 γ-Amorphene 25.54 1493 0.63 - - -
64 α-muurolene 25.64 1497 - 0.48 1.08 -
65 δ-Cadinene 25.92 1506 0.21 0.34 0.43 -
66 Isoshyobunone 26.32 1518 - - 2.68 -
67 Calamenene 26.71 1530 - - 0.98 -
68 α-Calacorene 26.83 1534 - - 1.54 -
69 Widdrol 26.93 1538 - - 1.76 -
70 Nerolidol 27.03 1543 - - - 0.17
71 Citronellyl isovalerate 27.1 1547 - - 1.52 -
72 Germacrene D-4-ol 27.3 1551 1.16 - - 1.43
73 (-)-Spathulenol 27.5 1558 0.78 0.26 11.71 0.96
74 Davanone 27.95 1573 - - 1.08 -
75 Caryophyllene oxide 28.37 1584 0.5 2.91 - 0.62
76 Carotol 28.61 1593 - - 0.13 -
77 1-epi-Cubenol 28.74 1599 1.91 - - 2.56
78 epi-α-Cadinol 29.05 1611 - - 0.15 -
79 α-Muurolol 29.21 1617 0.59 - 0.33 0.63
80 8-Isopropenyl-1,3,3,7-tetramethyl-bicyclo[5.1.0]-oct-5-en-2-one 29.37 1619 0.6 - - 0.67
81 γ-Gurjunene epoxide 29.43 1621 - 0.81 - -
82 α-Humulene epoxide II 29.5 1625 - - 0.72 -
83 β-Eudesmol 29.64 1629 - - 1.35 -
84 α-Cadinol 29.87 1632 0.44 0.14 0.59 0.57
85 β-bisabolol 29.93 1635 - - 0.43 -
86 Cedr-8-en-13-ol 30.15 1641 0.26 - - 0.2
87 9H-Cycloisolongifolene, 8-oxo- 30.5 1653 - - - 0.2
88 1-Methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-

cyclohexane
31.07 1675 0.52 - - 0.57

89 Isolongifolol 31.25 1681 0.28 0.17 - 0.29
90 β-Santalol 31.65 1693 0.4 0.23 0.13 0.48
91 Auraptenol 34.68 1792 0.8 - - 0.95
92 Phytol 37.92 1899 0.4 - - 0.4

Total identified 99.79% 98.89% 98.14% 99.82%
Monoterpene hydrocarbons 7.19% 26% 59.58% 5.83%
Oxgyenated monoterpenes 45.08% 63.48% 5.18% 57.04%
Sesquiterpene hydrocarbons 38.91% 3.44% 9.79% 13.59%
Oxgyenated sesquiterpenes 7.44% 4.52% 22.58% 9.35%
Non-terpenoid compounds 0.8% 0.7% 1.43% 13.6%
Oxgyenated Diterpenes 0.4% - - 0.4%

Rt, retention time (min.); RI, retention index on TG-5MS column relative to n-alkanes (C5-C28); Identification of compounds based on MS and RI by comparison to the 
NIST, WILEY and ADAMS libraries; Quantity of identified compounds presented as % relative peak area

Table 1 (continued) 
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identified major constituents can be detected. These vari-
ations might be attributed to environmental conditions 
(climate and soil), geographical origin, plant age and har-
vesting season.

GC-MS linked to multivariate analysis was performed 
to analyze the clustering pattern of the studied Arte-
misia species based on their volatile oil chemical profiles. 
Unsupervised pattern recognition is a mean to visualize 
data graphically without direction. It reduces the dimen-
sionality of datasets while maintaining and maximizing 
variability to discern hidden data patterns and samples’ 
distribution correlated to their chemical diversity. PCA 
model was employed for unsupervised pattern recogni-
tion. The score scatter plot of the PCA model (Fig. S3) 
showed a clear grouping of the Artemisia samples where 
PC1 and PC2 variability in the samples constituted 51.7% 
and 39.2%, respectively with a combined variance of 
90.9% and an adjusted ellipse Hoteling at 95%. A. mono-
sperma samples were clustered along the positive side 
of both PC1 and PC2 while A. herba-alba samples were 
gathered along the positive side of PC1 and negative 
side of PC2. Both A. annua and A. judaica samples were 
grouped in the negative side of PC1 and positive side of 
PC2. The validity of the model was confirmed as R2 and 
Q2 (goodness of fit and prediction) were estimated at 
0.999 and 0.997, respectively. The scores from PCA were 
utilized to construct HCA derived dendrogram (Fig.  1) 
which exposed two main clades. One clade comprised 
A. monosperma while the other clade included the other 
three species where A. herba alba was grouped in one 
subclade and A. annua and A. judaica were separated 
from each other in another subclade. Finally, the HCA 
heatmap (Fig. 1) was created to distinguish the rationale 
behind the observed clustering pattern. Several chemi-
cal compounds contributed (brick red) to the distinct 
clustering of the samples of which the major compounds 
in each volatile oil were main contributors such as 
α-pinene, β-pinene, β-Myrcene, limonene, α-terpinolene 
and (-)-spathulenol in A. monosperma, camphene, sabi-
nene, cis-pinocarveol, cis-piperitol, trans-chrysanthenyl 
acetate and cis-chrysanthenyl acetate in A. herba-alba, 
piperitone and trans-ethyl cinnamate in A. judaica, 
β-caryophyllene and germacrene D in A. annua.

Comparative analysis of the total alcoholic extracts of 
Artemisia species
Comparative chemical profiling of total alcoholic extracts 
of A. annua, A. herba-alba, A. monosperma and A. juda-
ica was endeavored using HPTLC-image analysis com-
bined to chemometry tracking certain chemical markers 
based on literature survey of genus Artemisia aiming at 
authentication and discrimination of the studied Arte-
misia species. Various classes of therapeutically active 
constituents were previously reported in Artemisia 

species such as sesquiterpene lactones, coumarins, flavo-
noids and phenolic acids [4, 35–39].

The chemical profiles/fingerprints were evaluated by 
tracking representative constituents of these chemical 
classes. The important sesquiterpene lactone, artemis-
inin, was tracked in plate I and revealed by anisaldehyde/
sulphuric acid spray reagent. Coumarins were tracked 
in the same plate by their fluorescence under UV light 
at 366  nm while phenolic acids and flavonoids were 
tracked by their fluorescence quenching under UV light 
at 254 nm in plate II.

Untargeted pattern recognition technique was accom-
plished via digitalization of plates I and II. Using PCA 
score, HCA was attempted as a clustering method for 
reliable division of dataset yielding HCA dendrograms 
representing the clustering patterns among samples 
based on their similarity index; expressed as Euclidean 
distance and calculated using single linkage algorithm via 
SIMCA + 14.1 software (Unmetrics AB, Umea, Sweden). 
The loading plots corresponding to PCA, are generated 
for tracking Rf zones most contributing to variance and 
hence responsible for the obtained clustering patterns 
among samples.

Plate I was visualized under UV light at 366  nm for 
evaluation of coumarins in the tested samples. The digi-
talized plate I (Fig. 2A) comprising 36 samples X 859 vari-
ables was analyzed and subjected to unsupervised pattern 
recognition method. The resultant PCA score scatter plot 
of the total extracts of the studied species (Fig. 2A), with 
PC1 and PC2 representing 60.3% total variance, showed 
clustering of A. annua samples along the positive side of 
PC2 in the upper half of the Hoteling ellipse apart from 
the other Artemisia species while A. judaica samples 
were collected along the positive side of PC1 and nega-
tive side of PC2 with A. monosperma clustered almost in 
the same quarter of the Hoteling ellipse when adjusted 
at 95% confidence level. Meanwhile, A. herba-alba sam-
ples were segregated along the negative side of both PC1 
and PC2. This was reflected on the HCA dendrogram 
(Fig.  2A) dividing Artemisia species into two separate 
clades; one for A. annua and one comprised the other 
species in two subclades; one for A. judaica and the other 
gathered A. monosperma and A. herba-alba separately. 
The corresponding loading plot (Fig. 2A) revealed zones 
accounting for the coumarins, aesculetin, scopoletin and 
umbelliferone, Rf of 0.11, 0.24 and 0.39, respectively. Sco-
poletin is a major distinctive coumarin in Artemisia spe-
cies [40, 41] with A. annua approximately showing the 
highest relative amount followed by A. judaica. Aescule-
tin and umbelliferone can be detected as minor couma-
rins in all extracts with A. annua and A. judaica showing 
relatively more intense spots compared to A. herba-alba 
and A. monosperma. Aesculetin was previously reported 
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in A. annua and other Artemisia species [38, 42, 43] and 
umbelliferone was detected in the genus [42–45].

Sequentially, Plate I was visualized in white light fol-
lowing post-chromatographic derivatization with anisal-
dehyde/sulphuric acid reagent (Fig.  2B) for tracking 
of the valuable sesquiterpene lactone (artemisinin) in 
the studied Artemisia species. PCA score scatter plot 
(Fig. 2B) of the digitalized plate (36 samples X 1173 vari-
ables) revealed that A. annua samples were clustered 
almost along the negative side of both PC1 and PC2 

while A. monosperma samples were localized along the 
positive side of PC2 and in between positive and negative 
sides of PC1. A. herba-alba and A. judaica were more 
closely clustered, both samples were gathered along the 
positive side of PC1 where A. herba-alba samples were at 
the negative side of PC2, while A. judaica samples were 
scattered between the positive and negative sides of PC2. 
PC1 and PC2 accounted for 47.9% and 25.9% of total 
variance among samples. The correlated HCA dendro-
gram (Fig. 2B) showed clustering pattern similar to that 

Fig. 1 Hierarchical clustering analysis heatmap of PCA model of all identified constituents of volatile oils of the studied Artemisia species. Brick red and 
blue designate higher and lower correlation to the clustering of the species, respectively
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exhibited for coumarins content, it separated A. annua 
in one clade while the other species were divided in two 
separate subclades of the other clade, with A. judaica and 
A. herba-alba sharing the same subclade in a distinctive 
manner. The corresponding loading plot (Fig. 2B) showed 
zones at Rf 0.09, 0.17, 0.29, 0.35, 0.45, 0.64 and 0.84 to be 
contributors to the clustering pattern of the samples. The 
zone at Rf 0.84 accounted for the sesquiterpene lactone, 
artemisinin, which can be clearly observed to be present 
only in the total extract of A. annua and undetected in 
the total extracts of A. herba-alba, A. monosperma and 
A. judaica. This confirms the discriminatory power of 
artemisinin in differentiating and distinguishing these 
Artemisia species as artemisinin is a characteristic chem-
ical constituent unique for the annua species and widely 
known for its antimalarial activity.

Regarding plate II visualized under UV light at 254 nm 
(Fig. 2C) tracking flavonoids and phenolic acids, PC1 and 
PC2 of the PCA score scatter plot (Fig. 2C) of the digi-
talized plate (36 samples X 1047 variables) accounted 
for 66.8% of variance among samples. It revealed that 
A. annua samples were clustered along the positive side 

of both PC1 and PC2 while A. herba-alba samples were 
clustered along the negative side of both PC1 and PC2. 
A. monosperma samples were localized along the posi-
tive side of PC1 and the negative side of PC2. On the 
other hand, A. judaica samples were gathered along the 
negative side of PC1 and the positive side of PC2. This 
clustering pattern was relevant in the associated HCA 
dendrogram (Fig.  2C) that distinctly grouped A. annua 
and A. monosperma in one clade and A. herba-alba and 
A. judaica in another clade. The corresponding loading 
plot (Fig.  2C) showed the most contributing zones to 
the clustering pattern. Several phenolic acids and flavo-
noids were detected in the extracts. The phenolic acids, 
chlorogenic acid (Rf 0.07) and caffeic acid (Rf 0.92), can 
be ascertained in the four species with caffeic acid pres-
ent in higher relative abundance in A. herba-alba and A. 
judaica. Both phenolic acids were previously detected 
in A. annua and other Artemisia species [36, 37, 41]. 
Kaempferol flavonoid aglycone (Rf 0.98) can be detected 
as a minor compound in all species except A. annua. 
Rutin (Rf 0.18) was revealed as a major spot in A. annua 
and A. monosperma while the other two species showed 

Fig. 2 HPTLC plates of representative samples of the studied Artemisia species (Tracks 1–3; A. annua total extracts, Tracks 4–6; A. herba-alba total extracts, 
Tracks 7–9; A. monosperma total extracts, Tracks 10–12; A. judaica total extracts) (A) Plate I viewed under UV at 366 nm [Tracks 13&14; Ref MIX 1 of umbel-
liferone (a), scopoletin (b) and aesculetin (c)]. (B) Plate I viewed in white light after post-chromatographic derivatization with anisaldehyde/sulphuric acid 
spray reagent [Tracks 13&14; reference artemisinin standard (d)]. (C) Plate II viewed under UV at 254 nm [Tracks 13&14; Ref MIX 2 of kaempferol (e), vitexin 
(g), quercetin-3-galactoside (h) and rutin (i) & phenolic acids; caffeic (f ) and chlorogenic acids (j)] along with their untargeted PCA score scatter plots, HCA 
dendrograms and corresponding loading plots
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minor amount. Rutin is a flavonoid that is usually present 
in Artemisia species [38, 46, 47]. Vitexin (Rf 0.42) can be 
identified in A. annua and A. monosperma, on the other 
hand, quercetin-3-galactoside (Rf 0.37) can be identified 
in A. annua and A. judaica. At the end, HPTLC analy-
sis provided insight into the chemical composition of the 
alcoholic extracts of the Artemisia species in relation to 
previous reports on the genus.

Authentication, classification and quality control of 
Artemisia species using NIR spectroscopy
NIR spectral analysis of Artemisia species
No clear differences can be discerned amongst the 
raw NIR spectra of A. annua, A. herba-alba, A. mono-
sperma and A. judaica within the spectral range of 
3800–7500  cm− 1 (Fig.  3A). Nevertheless, preprocessing 
by application of second derivative followed by wave-
let denoising (WDS) and Savitzky-Golay filter (SGF) 
depicted noticeable distinctions in the spectral regions 
spanning 3900–4200, 4320–4420, 4500–4800, 5100–
5500, 7100–7400 cm− 1 as shown in Fig. 3B.

The spectral features of the samples (Fig. 3B) comprised 
signals characteristic for lactones at approximately 5700–
5800, 5100–5400, 4700 and 4300 cm− 1 representing sym-
metric and asymmetric CH2 stretching overtone bands, 
carbonyl group second overtone, C-O stretching over-
tone and C-H bending vibration, respectively [48, 49]. 
Also, signals indicative of terpenes can be detected corre-
lated to the high content of mono- and sesquiterpenes. In 
addition to the occurrence of signals at 6020–6100 cm− 1 
signifying the first overtone of both -COC- and vinyl 
stretching of coumarins while signals in the region of 

4200–4700  cm− 1 can correspond to the hydroxyl group 
of phenolics [50, 51]. Bands at 5840–6090  cm− 1 corre-
lated to aromatic rings where band at 5920–5950  cm− 1 
represented the aromatic first overtone of–CH. More-
over, -OH stretching first overtone of sugar moieties were 
represented by signals in 6600–7090  cm− 1 region while 
-CH aliphatic first overtone of flavone glycosides sugar 
were denoted at 5630–5800 cm− 1 [52, 53].

Unsupervised pattern recognition of Artemisia powders
The NIR spectral data representing the X-variables were 
subjected to PCA to explore the grouping pattern of the 
powders of the studied Artemisia species. The score scat-
ter plot of PCA model (Fig. 4A) exposed distinct cluster-
ing of the Artemisia species with total variance within the 
samples of 81% and an adjusted ellipse Hoteling at 95% 
where variability of PC1 and PC2 constituted 51.1% and 
29.9%, respectively. A. annua samples were clustered 
along the negative side of PC1 and positive side of PC2 
while A. herba-alba samples were grouped opposite to it. 
On the other hand, A. monosperma samples were gath-
ered at the negative side of both PC1 and PC2 whereas 
A. judaica samples were clustered at the positive side of 
both. HCA derived dendrogram based on the PCA model 
(Fig.  4B) showed two main clades; one comprising A. 
annua and A. monosperma in two separate subclades and 
the other separating A. herba-alba and A. judaica in two 
subclades. The corresponding loading plot (Fig. S4) high-
lighted the regions contributing to the clustering pattern. 
Supervised class modelling was performed next to con-
sider class membership and authenticate each species.

Fig. 4 (A) PCA score scatter plot and (B) HCA dendrogram (single linkage algorithm) of the studied Artemisia species powders based on their NIR spectra

 

Fig. 3 Overlay of (A) raw NIR spectra and (B) Second derivative derivative, WDS and SGF converted NIR spectra of representative Artemisia samples span-
ning the range of 3800–7500 cm− 1
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Supervised pattern recognition (SIMCA) of Artemisia powders
SIMCA was applied for identification and authentica-
tion of the different Artemisia species. The SIMCA mod-
els were created using NIR data from 3800 to 7500 cm− 1 
where the data matrix comprised 75 samples of A. annua, 
A. herba-alba, A. monosperma and A. judaica X 481 vari-
ables for calibration whereas the test set consisted of 35 
samples (Fig. 5). The models were assessed for goodness 
of fitting and prediction showing R2 and Q2 above 0.9. 
Also, specificity, sensitivity, accuracy and efficiency were 
evaluated (Table  2). Correct classification of the classes 
assigned to the samples was ensured using Cooman’s 
plots (Table S1 and Fig. S5) that confirmed the model 
validity and ability to predict classes while avoiding 
misclassification.

Considering A. annua along with the other species (A. 
herba-alba, A. monosperma and A. judaica), the best 
SIMCA model was created using 3 principal components 
where PC1 and PC2 contributed to variance by 65.9% 
and 16.5%, respectively and the model exhibited sensi-
tivity and specificity of 96.67% and 100%, respectively. 
Similarly, SIMCA models were constructed for each of 
A. herba-alba, A. monosperma and A. judaica with the 

other species using 3 principal components (PC1 and 
PC2 contribution to variance was 78.6% and 13.6%, 91.2% 
and 7.82%, 75.1% and 18.8%, respectively) with all models 
exhibiting high sensitivity and 100% specificity.

The score scatter plots based on the created SIMCA 
models displayed distinct clustering of each Artemisia 
species with adjusted Hoteling ellipse at 95% which 
clearly distinguish A. annua from the other species 
(Fig. 5A), A. herba-alba from the other species (Fig. 5B), 
A. monosperma from the other species (Fig.  5C) and 
A. judaica from the other species (Fig.  5D). Hence, the 
models achieved the targeted classification of the spe-
cies based on the NIR spectra of their powdered samples. 
The corresponding loading plots (Fig. S6) underscored 
the NIR regions contributing to the classification of each 
Artemisia species.

PLSR models for quality control of A. annua
Detection of adulteration of A. annua is important due 
to its status as a valuable industrial crop. PLS regres-
sion analysis was employed to quantitatively evaluate 
the occurrence of Artemisia species adulterants in A. 
annua powdered samples, considering A. herba-alba, 

Table 2 Classification parameters for Artemisia species using SIMCA model
Class NS Sensitivity Specificity Efficacy Accuracy

Training (calibration) set A. annua 30 96.67% 100% 98.32% 98.67%
A. herba-alba 15 93.33% 100% 96.61% 98.67%
A. monosperma 15 100% 100% 100% 100%
A. judaica 15 93.33% 100% 96.61% 98.67%

Test set A. annua 14 92.86% 100% 96.36% 97.14%
A. herba-alba 7 100% 100% 100% 100%
A. monosperma 7 100% 100% 100% 100%
A. judaica 7 100% 100% 100% 100%

Fig. 5 SIMCA score scatter plot of samples applied to Artemisia species and constructed using (A) A. annua model, (B) A. herba-alba model, (C) A. mono-
sperma model and (D) A. judaica model based on the NIR spectra of their powder samples
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A. monosperma and A. judaica, in levels of adulteration 
ranging from 1 to 50% (Fig.  6). The X-matrix was rep-
resented by NIR spectral variables while the adultera-
tion levels represented the Y-matrix creating a sample 
X variable arrangement. The calibration set comprised 
56 samples, whereas 21 samples of each adulterant 
were additionally assigned to the test set. The complete 
multivariate calibration parameters utilized for vari-
ous adulterants quantitation (Table 3) indicated that the 
PLSR models created using the calibration set gener-
ated commendable outcomes. PLSR models constructed 
for adulteration prediction showed goodness of fit-
ting and prediction reflected in R2 and Q2 values. Also, 
PLSR models were internally and externally validated in 
terms of the accepted values of root mean square error 
of calibration (RMSEC), root mean square error of cross 
validation (RMSECV) and root mean square error of 
prediction (RMSEP). The calibration performance repre-
sented by RMSEC values was in the range of 0.5 to 1.1 for 
the different adulterants. For comprehensive evaluation, 
RMSECV values were calculated based on a leave-ten-
out cross-validation approach exhibiting a range from 0.6 
to 1.1. The RMSECV/RMSEC ratio of the models were 
below 1.5, indicating a low probability of data overfitting 
[54]. The robustness of the model fit was confirmed by 
satisfactory R2 values for both the calibration and cross-
validation data (Table  3). Residual predictive deviation 

(RPD) which is calculated as the ratio of standard devi-
ation (SD) of the original data to the RMSEP was used 
to evaluate the prediction accuracy and robustness of 
the models. RPD of 2.5-3 demonstrates good prediction 
accuracy while RPD > 3 reflects excellent prediction accu-
racy [54–56]. RPD for the models of the three adulterants 
was higher than 3 (Table 3) indicating that the models are 
excellent for quality control.

External validation was comprehensively performed, 
utilizing 21 samples for the test set of each model, and 
the results were meticulously authenticated through per-
mutation tests. The number of latent variables (LVs) by 
means of leave-one-out cross-validation are shown in 
Table 3 and the prediction residual error sum of squares 
(PRESS) are presented in Fig. 7 which were confirmed by 
assessment of the permutation plots and its analogous 
intercept values, as illustrated in Fig.  6. These results 
represent the suggestion that the models are capable of 
identifying sample adulterations guaranteeing A. annua 
authenticity excluding data overfitting or noise model-
ling. Moreover, the ranges for the Limit of Detection 
(LOD) and Limit of Quantification (LOQ) [minimum 
to maximum] for the PLSR models are depicted in 
Table 3. The LOD for all samples was less than 1.5%. The 
LOQ (less than 4.5%) for A. herba-alba was established 
at 1.95–3.89% while those for A. monosperma and A. 

Fig. 6 The correlation between observed and predicted values for PLSR model of A. annua adulterated with (A) A. herba-alba, (B) A. monosperma and 
(C) A. judaica along with their permutation plots
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judaica were estimated at 2.15–3.25% and 2.07–4.29%, 
respectively.

The use of NIR was previously reported for rapid detec-
tion of artemisinin in A. annua [57, 58]. The described 
approach of applying NIR for authentication and dis-
crimination of Artemisia species unlocks the potential of 
NIR application beyond detection of specific active con-
stituents and provide a reliable rapid method for quality 
control of the plant species.

Experimental
Plant material
Cultivated aerial parts of A. annua L. were collected from 
the experimental garden of Faculty of Pharmacy, Cairo 
University, Giza, Egypt on May 2021. Wild aerial parts 
of A. herba-alba Asso and A. monosperma Del. were col-
lected from Alexandria northern coast kilo 90 and 83, 
Egypt, respectively on May 2021. Finally, wild aerial parts 
of A. judaica L. were collected from Red Sea Governor-
ate, Egypt on July 2021. Additional plant samples of the 
four species were later collected on May 2022. Represen-
tative samples were authenticated by Prof. Dr. Amal M. 
Fakhry (Department of Botany and Microbiology, Faculty 
of Science, Alexandria University). A voucher specimen 
of each plant is deposited in Department of Pharmacog-
nosy, Faculty of Pharmacy, Alexandria University, Egypt.

Profiling Artemisia volatile oils by GC-MS
Volatile oils extraction
The volatile oils were separately extracted from 250  g 
of freshly cut aerial parts of each Artemisia species by 
hydrodistillation for 3 h at 50 ℃ using a Clevenger appa-
ratus. The distillate oily layer was separated and dried 
over anhydrous sodium sulphate. Finally, the extracted 
volatile oils were stored at 4 ℃ in hermetically sealed 
glass vials and wrapped in aluminum foil, till GC-MS 
analysis. The yield of volatile oil extracted from each 
Artemisia species was calculated based on the following 
equation:

Volatile oil yield (%) = [Volume of oil (ml) / Weight of 
plant material (g)] x 100.

GC-MS analysis of volatile oils
GC-MS analysis was performed for identification and 
relative quantitation of the extracted volatile oils’ con-
stituents. GC-MS was conducted on a Thermo Scientific, 
Trace GC Ultra/ISQ Single Quadrupole MS fitted with 
TG-5MS fused silica capillary column (30 m x 0.25 mm, 
0.25 μm film thickness). Electron ionization system with 
ionization energy of 70 ev and helium carrier gas at a 
constant flow rate of 1 mL/min were used for GC/MS 
detection. The temperature of the injector and MS trans-
fer line was set at 280 ℃. The oven temperature program 
was initially set at 40 ℃ for 3 min then increased to 280 Ta
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℃ at a rate of 5 ℃/min and finally held for 5  min. The 
quantitation of all the identified compounds was indi-
cated as a percent relative peak area and presented as an 
average of three separate analyses. A tentative identifica-
tion of the compounds was performed based on the com-
parison of their relative retention indices on TG-5MS 
column, calculated relative to a series of n-alkanes (C5-
C28), and mass spectra with literature data of the NIST, 
WILEY and ADAMS libraries.

Multivariate statistical analysis
The data obtained from the GC-MS analysis of the four 
Artemisia species, in triplicates, was subjected to unsu-
pervised pattern recognition through principal com-
ponent analysis (PCA) based on the identified volatile 
compounds using SIMCA®14.1 (Umetrics, Umea, Swe-
den). In addition, a Hierarchical cluster analysis (HCA) 
heatmap was constructed using Euclidean distance 
considering each annotated compound with the aid of 
Metaboanalyst 5.0 ( h t t p  s : /  / w w w  . m  e t a b o a n a l y s t . c a /).

Profiling Artemisia total alcoholic extracts by HPTLC-image 
analysis
Preparation of plant extracts samples for HPTLC
Air-dried powdered plant material of each Artemisia spe-
cies (300 g) was macerated in 1 L ethanol (70%) at room 
temperature for 10 days, then filtered and concentrated 
under reduced pressure to complete dryness using Buchi 
Rotavapor R-200, Flawil, Switzerland. 50 mg of the result-
ing dry residues were precisely weighed and dissolved in 
1  ml methanol for subsequent use in HPTLC analysis. 
All dissolved samples were filtered through an 0.2  μm 
syringe filter before application on the ready-made 
HPTLC plates.

Preparation of reference standard solutions
Sesquiterpene lactone reference standard: artemisinin, 
coumarin reference standards: umbelliferone, scopoletin 
and aesculetin, phenolic acids reference standards: caffeic 
acid and chlorogenic acid, along with flavonoid reference 
standards: kaempferol, vitexin, quercetin-3-galactoside 

and rutin (Sigma-Aldrich, USA) were individually pre-
pared in concentration of 0.5 mg/ml. Reference solution 
mixture 1 (Ref MIX 1) was prepared by admixing the 
individual reference standard solutions of umbelliferone, 
scopoletin and aesculetin. Reference solution mixture 
2 (Ref MIX 2) was prepared by admixing the individual 
reference standard solutions of kaempferol, vitexin, quer-
cetin-3-galactoside and rutin, in addition to caffeic and 
chlorogenic acids.

High performance thin-layer chromatography investigation
10 µl of the total alcoholic extracts of A. annua, A. herba-
alba, A. monosperma and A. judaica (in triplicate) along 
with 4 µl of Ref MIX 1 together with 4 µl of artemisinin 
were applied on plate I. While, plate II comprised 10 µl 
the total alcoholic extracts of A. annua, A. herba-alba, A. 
monosperma and A. judaica (in triplicate) along with 6 µl 
of Ref MIX 2.

Samples and Ref MIXs were applied on the HPTLC 
plates (10 × 20  cm) using a 100  µl syringe by means of 
CAMAG Linomat V automated spray-on band applicator 
(Muttenz, Switzerland) managed by WinCats manager 
software (Camag, 2008). The application settings were 
adjusted at 15  mm from both the margins and the bot-
tom of the HPTLC plates with bandwidth of 8 mm and 
inter-band spaces of 5 mm. Each plate was comprised of 
14 tracks; 12 tracks for the total extract samples of the 
four Artemisia species and 2 tracks for the reference 
standards. Different mobile phases were assessed for 
development of the sample spots with optimal resolution. 
System I (toluene: ethyl acetate 7.5: 2.5 v/v) was chosen as 
the optimum developing system for plate I and system II 
(ethyl acetate: methanol: water: glacial acetic acid 60: 5: 
4: 0.25 v/v/v/v) was utilized for plate II. The plates were 
developed vertically for a distance of 90  mm in twin-
trough CAMAG glass chamber (10 × 20  cm) containing 
50 ml mobile solvent system. Plate I was visualized under 
UV light at 366 nm followed by spraying with anisalde-
hyde/sulphuric acid reagent and heating at 120 ℃ while 
plate II was visualized under UV light at 254 nm.

Fig. 7 Variations in PRESS as a function of the optimal latent variables number for PLSR model of A. annua adulterated with (A) A. herba-alba, (B) A. mono-
sperma and (C) A. judaica

 

https://www.metaboanalyst.ca/
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Image processing and multivariate data analysis
The resulting images of the plates comprising total 
extracts of A. annua, A. herba-alba, A. monosperma 
and A. judaica developed in each of systems I & II were 
adjusted via Adobe Photoshop® then processed using 
ImageJ 1.51h (Wayne Rasband, NIH, USA) for multivari-
ate image analysis providing profile plots for each sample. 
The profile plots are denoted in two-dimensional plots 
of pixels’ intensities against their distance along a fixed 
line. The data matrices assembled using these profile 
plots were subjected to multivariate data analysis using 
SIMCA 14.1 software (Unmetrics AB, Umea, Sweden). 
PCA and HCA were employed for untargeted chemical 
profiling to decrease the HPTLC profiles’ data dimen-
sionality and explore possible clustering patterns of the 
studied samples.

Authentication, differentiation and quality control of 
Artemisia powders by NIR spectroscopy
Preparation of samples
44 samples of A. annua, 22 samples of each of A. herba-
alba, A. monosperma and A. judaica aerial parts were 
collected in an intact form with a total of 110 samples. 
Details of the times and locations of samples collection 
is presented in Table S2. Samples were milled into pow-
der with fine particle size in a Moulinex electric grinder 
then passed over a 2  mm mesh screen sieve to guaran-
tee particle size uniformity. One gram of each sample was 
weighed then the samples were allocated into training 
and test sets randomly. 30 samples of A. annua and 15 
samples of each of A. herba-alba, A. monosperma and A. 
judaica constituted the training set, while a test set of 14 
A. annua samples, 7 samples of each of A. herba-alba, A. 
monosperma and A. judaica was established.

Preparation of adulterated mixtures
A. annua samples were methodically comminuted with 
each of A. herba-alba, A. monosperma and A. judaica for 
intentional adulteration with adulterant percentages in 
the range of 1 to 50% (1, 2, 5, 10, 20, 30 and 50%) produc-
ing a total of 231 intentionally adulterated mixtures. The 
binary mixtures with adulterants were randomly assigned 
to calibration (168 samples) and test (63 samples) sets. 
Further NIR analyses were performed by using one gram 
of each mixture and PLSR regression models were assem-
bled from the resulting spectra.

NIR spectroscopy for measurements and data acquisition
A multi-purpose analyzer (MPA) FT-NIR spectrom-
eter (Bruker Optics GmbH, Rudolf Plank, Ettlingen, 
Germany) integrated with an InGaAs (indium-gallium-
arsenide) detector was employed for NIR scanning of all 
samples, in uniform glass vials of 20  mm diameter and 
height, through sphere module in the wave number range 

from 3500 to 12,000  cm− 1. The NIR spectra were gath-
ered using OPUS spectral acquisition software (version 
6.5, Bruker Optics Inc., Germany) in a diffuse reflectance 
mode with an average of 32 scans at a 16 cm− 1 resolution 
per spectrum, using the powdered samples without prior 
treatment at room temperature. For each sample, three 
scans were acquired preceding data analysis then, the 
average mean-centered spectra were incorporated in our 
models. Scatter and baseline drift correction was accom-
plished by executing weighted multiple scatter correction 
(WMSC) through OPUS software (version 6.5 Bruker 
Optics Inc.).

Pre-treatment of spectral data
Preprocessing of raw NIR spectra of genuine samples and 
purposely adulterated mixtures was performed via sec-
ond order derivative, wavelet denoising (WDS) and Sav-
itzky-Golay filter (SGF). SIMCA-P version 14.1 software 
(Umetrics AB, Umea, Sweden) was employed for prepro-
cessing of spectra and multivariate data analysis.

Principal component analysis (PCA) and hierarchical cluster 
analysis (HCA)
Analysis of the data using PCA can be applied by 
inspecting the differences in the NIR spectra without 
any reference to other analytical measurements. The 
NIR absorbance spectra obtained along the range of 
3800–7500 cm− 1 were analyzed by PCA to discern out-
liers, likely patterns and the distribution and diversity 
of samples correlated to their chemical variability. HCA 
dendrogram using PCA scores was created by SIMCA-
P 14.1 software (Umetrics AB, Umea, Sweden) to exhibit 
the samples grouping patterns based on similarity.

Soft independent modelling of class analogy (SIMCA) of the 
Artemisia species
SIMCA is a supervised categorizing method based on the 
samples’ similarity associated to preset categories. It is 
applied for authentication and classification of A. annua, 
A. herba-alba, A. monosperma and A. judaica. SIMCA 
models were implemented and assessed for goodness of 
fit and prediction (R2 and Q2), in addition to, evaluation 
of classification performance through calculating accu-
racy, sensitivity, specificity and efficiency. The Coomans’ 
plot can be used to assess adequate class separation 
[59–61].

Partial least-squares regression (PLSR) prediction model for 
measuring adulteration content
PLSR models for adulteration of A. annua with each 
of A. herba-alba, A. monosperma and A. judaica were 
established. The number of latent variables (LVs) in each 
PLSR model were estimated via Leave-One-Out cross-
validation, using the prediction residual error sum of 
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squares (PRESS). PLSR models of the quantity of adul-
terants were created using Simca-P version 14.1 software 
(Umetrics AB, Umea, Sweden) for prediction of adulter-
ants’ presence in the mixtures. Three PLSR models were 
individually implemented for the three Artemisia spe-
cies adulterating A. annua by means of PLS-1 where the 
X-matrix constituted the NIR absorbance values, while 
the Y-matrix was composed of the percentage of adul-
terants. Evaluation of the models through R2 was carried 
out. Moreover, RMSEC, RMSECV, RMSEP were evalu-
ated for calibration, cross validation and prediction. RPD 
(SD/RMSEP) was calculated to assess the predictive abil-
ity of the models. Permutations plots were employed to 
ensure the absence of data over-fit (noise modelling). 
Additionally, the Limit of Detection (LOD) and Limit 
of Quantification (LOQ) for the PLSR models were cal-
culated based on the interval approach suggested by 
Allegrini and Olivieri [62] where they suggested a mini-
mum to maximum range of LOD and LOQ values instead 
of a single value, designed specifically for multivariate 
models [63]. The LOD and LOQ were estimated through 
MATLAB R2017b with the freely available software 
MVC1 from Instituto de Química del Rosario (IQUIR), 
which can be opened at  h t t p  s : /  / w w w  . m  a t h  w o r  k s . c  o m  / m 
a  t l a  b c e n  t r  a l /  fi  l  e e x c  h a  n g e  / 1 3  4 3 2 7  - fi   r s  t - o  r d e r  - m  u l t  i v a  r i a t  e 
-  c a l i b r a t i o n - g u i [49, 64–67].

Conclusion
This study offers a comprehensive comparative integrated 
approach for phytochemical profiling, classification, 
authentication and quality control of Artemisia species, 
wild and cultivated in Egypt. Artemisia species present 
interesting and valuable industrial crops especially A. 
annua that is cultivated worldwide, additionally the wild 
species A. herba-alba, A. monosperma and A. judaica 
possess great medicinal potential and commercial appli-
cations. GC-MS investigation of the volatile oil of the 
four studied species revealed that they are rich in volatile 
oil components with similarities and variations in their 
composition. This provided a chemical profile of the vol-
atile oil of each species allowing for their differentiation 
and fingerprinting. HPTLC-image analysis of their total 
alcoholic extracts facilitated fast comparative fingerprint 
profiling of the species revealing their clustering pattern 
and significant chemical markers including coumarins, 
the sesquiterpene lactone artemisinin, phenolic acids 
and flavonoids. Finally, NIR spectroscopy was employed 
for rapid classification and authentication of the plants’ 
powdered samples where unsupervised pattern recogni-
tion exhibited clear sample grouping followed by SIMCA 
class modelling for supervised pattern recognition dem-
onstrating high sensitivity, specificity and classifica-
tion accuracy. Also, quality control of A. annua powder 
was achieved by application of PLSR models to detect 

adulteration with the other Artemisia species. This com-
prehensive approach utilized complementary chemical 
profiling methods to draw a complete picture of the fin-
gerprint of each of the studied Artemisia species allow-
ing their discrimination and authentication in different 
forms, in addition to unlocking their future potential. It 
also highlighted the similarities and diversities of their 
chemical profiles in relation to previous reports on the 
studied species and the genus in general.
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