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hydrazides etc. (Scheme 1B) [10–14]. In addition, radical 
hydrosulfonylation of alkynes with sulfonylation reagents 
has been developed as a complementary protocol [15–
17]. C-H sulfonylation reactions of alkenes are considered 
an ideal synthetic strategy because they effectively avoid 
the pre-functionalization of alkene substrates [18–20]. In 
2019, Pan group developed a copper-catalyzed oxidative 
coupling between styrene and thiophenols to synthesize 
aryl alkenyl sulfones [21–23]. However, there are still sig-
nificant challenges in efficiently preparing alkenyl methyl 
sulfones while circumventing the utilization of malodor-
ous starting materials.

As for the preparation of allyl sulfone compounds 
[24–26], traditional methods typically employ oxidative 
reactions of allyl sulfides. However, strong oxidants are 
unable to differentiate between unsaturated bonds and 
sulfur atoms. Afterwards, transition-metal catalyzed sul-
fonylation reactions with allyl precursors have been grad-
ually developed (Scheme 1B) [27–29]. However, issues 
such as the preassembly of leaving groups, harsh reac-
tion conditions, and the necessity for expensive organic 
ligands remain evident and often unavoidable. Despite 
significant advancements in allyl C-H functionalization 
[30], direct sulfonylation remains a major challenge due 

Introduction
Methyl sulfone is a fundamental structural unit found in 
various bioactive molecules and natural products. For 
instance, methylgerambullin has the potential for anti-
hepatocellular carcinoma activity [1, 2]. Furthermore, 
it serves as a versatile intermediate for the synthesis of 
sophisticated functional materials, as depicted in Scheme 
1A [3]. It is remarkable that AMSO2 has the potential to 
mitigate nephrotoxicity induced by cisplatin through the 
suppression of the ROS/MAPK/NF-κB signaling pathway 
[4]. Therefore, there is a driving force for the development 
of novel synthetic methods that could produce these 
structurally diverse sulfone compounds [5–9]. Currently, 
the reliable synthesis of alkenyl sulfones can be accom-
plished by sulfonylating various alkenylating agents with 
sulfonyl chlorides, sulfinic acids, sulfinates and sulfonyl 
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Abstract
A successful methodology for the copper-catalyzed dehydrogenated methylsulfonylation of alkenes utilizing 
CH3SSO3Na in conjunction with hypervalent iodine reagents was successfully established. This method offers a 
practical avenue to obtain allyl methyl sulfones and alkenyl methyl sulfones by forming C-S bonds. Using the C-H 
bond oxidation sulfonylation strategy with alkenes and Bunte salts, we successfully synthesized a total of twenty 
two compounds, including four examples of deuterium-substituted molecules, and demonstrated one example of 
a scale-up reaction.
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to the strong coordination effect between sulfur atoms 
and transition metal salts. The free radical addition/
dehydrogenation between sulfonyl radicals and α-methyl 
styrenes offers a new pathway for the preparationof allyl 
sulfone [31]. However, this strategy is only effective for 
aryl sulfonyl groups. There is no corresponding report 
on preparing allyl alkyl sulfones using this reaction path-
way. Hence, an efficient and green approach towards the 
sulfonylation of alkenes that can complementary to the 
prior arts is in high demand.

Bunte salts are commonly utilized as reagents for sul-
furation, mainly for the preparation of thioether com-
pounds by forming new sulfur-carbon bonds [32]. Their 
use as a sulfonation reagent hasn’t been documented, 
though. Based on our intriguing research on Bunte 
salts [33, 34], we envisioned that, given the proper oxi-
dant, CH3SSO3Na may potentially function as a sulfonyl 
source (Scheme 1C). In this study, we present a novel 
method that uses CH3SSO3Na as the sulfonating reagent 
and hypervalent iodine as the oxidant to directly access 
allyl methyl sulfones and alkenyl methyl sulfones. Sig-
nificantly, the trideuteromethylsulfonylation of α-methyl 
styrenes with CD3SSO3Na further illustrated the effec-
tiveness of this tactic, creating a large space for the syn-
thesis of deuterated molecules.

Results and discussion
Initially, we chose α-methyl styrene and CH3SSO3Na as 
model substrates to optimize reaction conditions and 
screened various copper salts and oxidants (Table  1). 
Surprisingly, the combination of Cu(NO3)2 with PIDA 
led to the formation of allyl sulfone instead of allyl sul-
fides (entry 5). However, other commonly used cop-
per salts, such as CuI and CuBr2 performed relatively 
poorly (entries 6, 7). When other oxidants, such as DDQ 
and NFSI were used, no sulfonylation reactions were 
observed (entries 1–4). Next, we prepared and screened 
PIDA analogs to adjust their oxidizability [35–36]. It was 
discovered that electron-donating functional groups pro-
moted reaction efficiency, while electron-withdrawing 
functional groups inhibited it (entries 8–11). The results 
showed that PIFA directly inhibited the initiation of the 
transformation, and benzoyloxy and bulky adamantoy-
loxy groups were also unfavorable for substrate conver-
sion (entries 12–15). During the screening of various 
solvents (entries 16–18), we found that toluene, ace-
tonitrile, and THF significantly hindered the coupling 
reaction, resulting in a substantial amount of unreacted 
starting material. Furthermore, the reaction atmosphere 
had a slight influence on the transformation, with a 
noticeable decrease in yield observed under nitrogen 
conditions (entry 19). Furthermore, the sulfonylation 
reactions were significantly impacted by changes in 

Scheme 1  Synthetic protocols to access allyl methyl sulfone and alkenyl methyl sulfone
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the reaction temperature, which hindered the process 
(entries 20, 21).

Following the determination of the optimal reaction 
conditions, we conducted a study examining the alkene 
substrates. As depicted in Scheme 2, various styrenes 
underwent C-H bond sulfonylation reactions, all given 
the target products in generally good yields and exhibit-
ing excellent site selectivity. For styrene derivatives, it 
was found that a wide range of function-group such as 
methoxy, fluoride, chloride, bromide, iodide, are com-
patible under our reaction conditions. However, when 
the styrene contains electron-withdrawing functional 
groups, it becomes incompatible under standard reaction 

conditions. We speculate that the primary factor underly-
ing this phenomenon is the destabilization of the benzyl 
radical, which occurs due to the addition of thiyl radicals 
to styrenes that contain electron-withdrawing groups. 
Furthermore, naphthylene was identified as an appropri-
ate coupling substrate, producing the expected product 
(3e) with an efficiency of 88%.

It is worth mentioning that among all reported litera-
ture, there is no procedure to prepare allyl trideutero-
methyl sulfones. Deuteration of drugs is primarily done 
to optimize the pharmacokinetic characteristics while 
preserving their original pharmaceutical activity [37]. In 
2024, Wang group successfully designed and synthesized 

Table 1  Screening study of C-H sulfonation with CH3SSO3Naa
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((methyl-d3)sulfonyl)ethyne, which was applied in radi-
cal addition with thiols to generate alkenyl trideutero-
methyl sulfones [38]. We reasoned that the construction 
of diverse deuterated molecules and the development of 
direct trideuteromethylsulfonylation of alkenes would be 
beneficial for the late-stage diversification of alkene-con-
taining pharmaceuticals. When CH3SSO3Na is replaced 
with CD3SSO3Na, the oxidative trideuteromethylsulfo-
nylation of α-methylstyrene can be successfully achieved, 
resulting in the corresponding allyl trideuteromethyl sul-
fone compounds with a high deuteration rate (Scheme 
3). This method highlights the significant potential 
applications for the efficient construction of deuterated 
compounds.

Next, we examined a diverse range of 1,1-diarylalkenes 
to evaluate the synthetic versatility of our approach 

(Scheme 4). Notably, important functional groups like 
methyl and methoxy were well-tolerated on the ben-
zene rings. Additionally, our strategy proved effective 
for styrene derivatives, affording the E-stereoselective 
target product (5d) in excellent yield. Furthermore, the 
late-stage alteration of natural products successfully 
exemplified this methodology, as styrene derivatives of 
carvacrol and fenofibric acid smoothly underwent sul-
fonylation with CH3SSO3Na to yield the corresponding 
α,β-unsaturated sulfones (5e, 5f).

Gram-scale oxidative sulfonylation of α-methylstyrene 
with CD3SSO3Na illustrates the feasibility of this strat-
egy and its potential for other commercial applications 
(Scheme 5).

We conducted several control studies to elucidate the 
potential reaction mechanism (Scheme 6A). Initially, the 

Scheme 3  Synthesis of various allyl trideuteromethyl sulfones. a The experimental conditions were as follows: α-methyl styrenes (0.2 mmol), CD3SSO3Na 
(0.4 mmol), Cu(NO3)2 (0.02 mmol), hypervalent iodine (0.4 mmol), and solvent (2.0 mL) were subjected to heating at 80 °C for 24 h. b Separated yield

 

Scheme 2  Synthesis of various allyl methyl sulfones. a The experimental conditions were as follows: α-methyl styrenes (0.2 mmol), CH3SSO3Na (0.4 mmol), 
Cu(NO3)2 (0.02 mmol), hypervalent iodine (0.4 mmol), and solvent (2.0 mL) were subjected to heating at 80 °C for 24 h. b Separated yield
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Scheme 6  Reaction mechanistic investigation and proposed mechanism

 

Scheme 5  Gram-scale reactions

 

Scheme 4  Synthesis of various alkenyl methyl sulfones. a The experimental conditions were as follows: 1,1-diarylalkenes (0.2 mmol), CH3SSO3Na (0.4 
mmol), Cu(NO3)2 (0.02 mmol), hypervalent iodine (0.4 mmol), and solvent (2.0 mL) were subjected to heating at 80 °C for 24 h. b Separated yield
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observation that the modular reaction did not generate 
the anticipated product 3a upon the addition of TEMPO 
suggests the participation of a radical species during the 
reaction progress (entry 1). Additionally, the allyl methyl 
sulfide failed to form an oxidized product under standard 
reaction conditions (entry 2). This result indicates that 
the sulfonylation product is formed through the genera-
tion of mesyl radicals, rather than a thiolation followed 
by an oxidation process. Based on the integration of 
prior literature and experimental findings, we have pro-
posed a tenable reaction mechanism, which is depicted 
in Scheme 6B. Initially, the hypervalent iodine interacts 
with the Bunte salts, releasing sulfur trioxide and forming 
an iodine-sulfur intermediate A [39]. This intermediate 
homolytically dissociates into an aryl iodide radical and 
sulfur radical [40]. Subsequently, the sulfur radical under-
goes homo-coupling to form CH3SSCH3, which easily 
undergoes oxidation to produce CH3SO2SCH3 in the 
presence of oxidants [41]. The sulfonothioate undergoes 
homolytic cleavage to form sulfur and a mesyl radical. 
Due to the stronger electrophilicity of the hypervalent 
mesyl radical, it preferentially undergoes a radical addi-
tion reaction with the olefin, forming an alkyl radical 
intermediate B. Next, CuII further oxidizes this alkyl radi-
cal into a carbocation intermediate C via single-electron 
oxidation. Finally, a β-H elimination reaction occurs to 
obtain the target product.

Conclusions
In conclusion, we have devised a straightforward 
method for the direct transformation of readily available 
α-methyl styrenes into allyl methyl sulfones and α-aryl 
styrenes into alkenyl methyl sulfone compounds. This 
process employs copper-catalyzed methylsulfonylation 
of alkenes with CH3SSO3Na as the key step. Late-stage 
alteration of complicated substrates is made possible 
by the wide functional group compatibility, robustness, 
and simplicity of the reaction conditions. Furthermore, 
gram-scale reactions have successfully validated the prac-
tical applicability of this protocol, providing a reliable 
means to incorporate trideuteromethyl sulfonyl groups 
into organic molecules, which is certainly beneficial to 
the research and development of deuterium-substituted 
drug molecules. Owing to its straightforward nature, 
compatibility with a wide range of substrates and excel-
lent functional group tolerance, our laboratory is actively 
investigating trideuteromethyl sulfone-containing small 
molecules for the development and discovery of lead 
compounds.

Experiment
General procedure of Trideuteromethylsulfonylation of 
α-methyl styrenes
General procedure of trideuteromethylsulfonylation of 
α-methyl styrenes.

A stir bar-fitted 25 mL Schlenk tube, was assembled 
containing α-methyl styrenes (0.2 mmol), Cu(NO3)2 
(0.02 mmol), hypervalent iodine (III) (0.4 mmol), and 
CD3SSO3Na (0.4 mmol). Subsequently, 2.0 mL of dimeth-
ylacetamide was introduced into the mixture, a rubber 
septum was used to seal the tube. The reaction tube was 
subjected to 80 °C for 24 h. Upon cooling to room tem-
perature, 10 mL of diethyl ether and water were added 
to dilute it. After extraction process, the organic layer 
was subjected to drying using sodium sulfate and subse-
quently concentrated under vacuo. The resultant mixture 
underwent further purification via flash chromatography 
to obtain different products.

Characterization of products in details
(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3a)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (29.8 mg, 76% yield). 1H NMR (400 MHz, CDCl3): δ 
7.52–7.50 (m, 2 H), 7.45–7.38 (m, 3 H), 5.81 (s, 1 H), 5.61 
(s, 1 H), 4.24 (s, 2 H), 2.76 (s, 3 H); 13C NMR (100 MHz, 
CDCl3): δ 138.71, 136.72, 128.95, 128.69, 126.38, 122.27, 
60.86, 40.35. HRMS (ESI): calcd for C10H13O2S [M + H]+ 
197.0630, found 197.0634.

1-methyl-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3b)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (33.6 mg, 80% yield). 1H NMR (400 MHz, CDCl3): δ 
7.40 (d, J = 8.2 Hz, 2 H), 7.23 (d, J = 8.0 Hz, 2 H), 5.77 (s, 
1 H), 5.55 (s, 1 H), 4.22 (s, 2 H), 2.75 (s, 3 H), 2.40 (s, 3 H). 
13C NMR (100  MHz, CDCl3): δ 138.68, 136.59, 135.76, 
129.63, 126.24, 121.36, 60.91, 40.31, 21.21. HRMS (ESI): 
calcd for C11H15O2S [M + H]+ 211.0787, found 211.0789.

1-fluoro-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3c)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liquid 
(27.8 mg, 65% yield). 1H NMR (400 MHz, CDCl3): δ 7.49 
(dd, J = 8.6, 5.3 Hz, 2 H), 7.11 (t, J = 8.6 Hz, 2 H), 5.76 (s, 
1 H), 5.57 (s, 1 H), 4.20 (s, 2 H), 2.82 (s, 3 H). 13C NMR 
(100  MHz, CDCl3): δ 162.90 (d, J = 248.7  Hz), 135.82, 
134.84 (d, J = 3.4 Hz), 128.25 (d, J = 8.1 Hz), 122.11, 115.83 
(d, J = 21.7 Hz), 60.91, 40.30. 19F NMR (375 MHz, CDCl3) 
δ -113.03; HRMS (ESI): calcd for C10H12O2FS [M + H]+ 
215.0536, found 215.0538.
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1-chloro-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3d)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (31.7 mg, 69% yield). 1H NMR (400 MHz, CDCl3): δ 
7.46 (d, J = 8.6 Hz, 2 H), 7.39 (d, J = 8.7 Hz, 2 H), 5.81 (s, 
1 H), 5.61 (s, 1 H), 4.20 (s, 2 H), 2.83 (s, 3 H). 13C NMR 
(100  MHz, CDCl3): δ 137.15, 135.74, 134.61, 129.04, 
127.77, 122.63, 60.62, 40.31. HRMS (ESI): calcd for 
C10H12O2ClS [M + H]+ 231.0241, found 231.0244.

2-(3-(methylsulfonyl)prop-1-en-2-yl)naphthalene (3e)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liquid 
(37.9 mg, 77% yield). 1H NMR (400 MHz, CDCl3): δ 7.96 
(d, J = 1.9 Hz, 1 H), 7.91–7.86 (m, 3 H), 7.64 (dd, J = 8.7, 
1.9  Hz, 1  H), 7.56–7.53 (m, 2  H), 5.95 (s, 1  H), 5.71 (s, 
1  H), 4.35 (s, 2  H), 2.78 (s, 3  H). 13C NMR (100  MHz, 
CDCl3): δ 136.62, 135.90, 133.29, 133.21, 128.78, 128.43, 
127.70, 126.78, 126.75, 125.61, 124.08, 122.66, 60.85, 
40.39. HRMS (ESI): calcd for C14H15O2S [M + H]+ 
247.0787, found 247.0790.

4-(3-(methylsulfonyl)prop-1-en-2-yl)-1,1’-biphenyl (3f)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow 
solid (43.5  mg, 80% yield), Mp = 116–117℃. 1H NMR 
(400 MHz, CDCl3): δ 7.67–7.58 (m, 6 H), 7.51–7.47 (m, 
2 H), 7.43–7.38 (m, 1 H), 5.88 (s, 1 H), 5.63 (s, 1 H), 4.27 
(s, 2  H), 2.82 (s, 3  H). 13C NMR (100  MHz, CDCl3): δ 
141.49, 140.23, 137.48, 136.33, 128.95, 127.73, 127.56, 
127.08, 126.79, 122.04, 60.77, 40.35. HRMS (ESI): calcd 
for C16 H16 O2 NaS [M + Na]+ 295.0769, found 295.0771.

1-bromo-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3 g)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (41.1 mg, 75% yield). 1H NMR (400 MHz, CDCl3): δ 
7.54 (d, J = 8.5 Hz, 2 H), 7.39 (d, J = 8.6 Hz, 2 H), 5.81 (s, 
1 H), 5.61 (s, 1 H), 4.19 (s, 2 H), 2.82 (s, 3 H). 13C NMR 
(100  MHz, CDCl3): δ 137.62, 135.80, 132.03, 128.05, 
122.85, 122.72, 60.61, 40.35. HRMS (ESI): calcd for 
C10H11O2NaSBr [M + Na]+ 296.9561, found 296.9569.

1-iodo-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3 h)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow 
solid (49.6  mg, 77% yield), Mp = 100–101℃. 1H NMR 
(400  MHz, CDCl3): δ 7.75 (d, J = 8.6  Hz, 2  H), 7.25 (d, 
J = 8.5 Hz, 2 H), 5.82 (s, 1 H), 5.60 (s, 1 H), 4.19 (s, 2 H), 
2.82 (s, 3  H). 13C NMR (100  MHz, CDCl3): δ 138.20, 
138.01, 135.91, 128.19, 122.74, 94.54, 60.54, 40.33. HRMS 
(ESI): calcd for C10H11O2NaSI [M + Na]+ 344.9422, found 
344.9428.

1-chloro-3-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3i)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (32.2 mg, 70% yield). 1H NMR (400 MHz, CDCl3): δ 
7.49–7.49 (m, 1 H), 7.39–7.34 (m, 3 H), 5.82 (s, 1 H), 5.64 
(s, 1 H), 4.19 (s, 2 H), 2.82 (s, 3 H). 13C NMR (100 MHz, 
CDCl3): δ 140.65, 135.66, 134.91, 130.14, 128.71, 126.63, 
124.61, 123.29, 60.57, 40.38. HRMS (ESI): calcd for 
C10H11O2NaSCl [M + Na]+ 253.0066, found 253.0064.

1-(tert-butyl)-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene 
(3j)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (40.8 mg, 81% yield). 1H NMR (400 MHz, CDCl3): δ 
7.44 (m, 4  H), 5.80 (s, 1  H), 5.57 (s, 1  H), 4.23 (s, 2  H), 
2.78 (s, 3 H), 1.36 (s, 9 H). 13C NMR (100 MHz, CDCl3): 
δ 151.87, 136.44, 135.64, 126.00, 125.84, 121.31, 60.81, 
40.26, 34.67, 31.28. HRMS (ESI): calcd for C14H20O2NaS 
[M + Na]+ 275.1082, found 275.1086.

1-methoxy-4-(3-(methylsulfonyl)prop-1-en-2-yl)benzene (3k)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (24.9  mg, 55% yield). 1H NMR (400  MHz, CDCl3): 
δ 7.47 (d, J = 8.6  Hz, 2  H), 6.96 (d, J = 8.6  Hz, 2  H), 5.74 
(s, 1 H), 5.51 (s, 1 H), 4.22 (s, 2 H), 3.88 (s, 3 H), 2.78 (s, 
3  H). 13C NMR (100  MHz, CDCl3): δ 159.94, 136.13, 
130.95, 127.59, 120.37, 114.22, 61.02, 55.35, 40.22. HRMS 
(ESI): calcd for C11H14O3NaS [M + Na]+ 249.0561, found 
249.0568.

1-(3-(methylsulfonyl)prop-1-en-2-yl)-4-(trifluoromethoxy)
benzene (3 L)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow solid 
(31.9 mg, 57% yield), Mp = 59–60℃. 1H NMR (400 MHz, 
CDCl3): δ 7.54 (d, J = 8.8 Hz, 2 H), 7.25 (d, J = 8.3 Hz, 2 H), 
5.81 (s, 1  H), 5.61 (s, 1  H), 4.21 (s, 2  H), 2.84 (s, 3  H). 
13C NMR (100  MHz, CDCl3): δ 149.29, 137.34, 135.50, 
127.94, 122.93, 121.44 (q, J = 205.8  Hz), 121.12, 60.57, 
40.23. 19F NMR (375  MHz, CDCl3) δ -57.81; HRMS 
(ESI): calcd for C11H11O3F3NaS [M + Na]+ 303.0279, 
found 303.0288.

(3-((methyl-d3)sulfonyl)prop-1-en-2-yl)benzene (4a)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (30.6  mg, 77% yield). 1H NMR (400  MHz, CDCl3): 
δ 7.52–7.48 (m, 2  H), 7.45–7.38 (m, 3 H), 5.80 (s, 1 H), 
5.60 (s, 1 H), 4.23 (s, 2 H). 13C NMR (100 MHz, CDCl3): 
δ 138.73, 136.73, 128.95, 128.69, 126.38, 122.24, 60.86. 
HRMS (ESI): calcd for C10H9D3O2NaS [M + Na]+ 
222.0644, found 222.0653.
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1-bromo-4-(3-((methyl-d3)sulfonyl)prop-1-en-2-yl)benzene 
(4b)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liquid 
(40.4 mg, 73% yield). 1H NMR (400 MHz, CDCl3): δ 7.54 
(d, J = 8.6 Hz, 2 H), 7.38 (d, J = 8.6 Hz, 2 H), 5.81 (s, 1 H), 
5.60 (s, 1 H), 4.18 (s, 2 H). 13C NMR (100 MHz, CDCl3): 
δ 137.64, 135.82, 132.04, 128.04, 122.87, 122.66, 60.60. 
HRMS (ESI): calcd for C10H8D3O2NaSBr [M + Na]+ 
299.9749, found 299.9753.

1-methyl-4-(3-((methyl-d3)sulfonyl)prop-1-en-2-yl)benzene 
(4c)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (34.9 mg, 82% yield). 1H NMR (400 MHz, CDCl3): δ 
7.39 (d, J = 8.2 Hz, 2 H), 7.23 (d, J = 7.9 Hz, 2 H), 5.77 (s, 
1 H), 5.55 (s, 1 H), 4.21 (s, 2 H), 2.39 (s, 3 H). 13C NMR 
(100  MHz, CDCl3): δ 138.68, 136.60, 135.77, 129.62, 
126.23, 121.31, 60.91, 21.17. HRMS (ESI): calcd for 
C11H11D3O2NaS [M + Na]+ 236.0801, found 236.0804.

2-(3-((methyl-d3)sulfonyl)prop-1-en-2-yl)naphthalene (4d)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow solid 
(39.3 mg, 79% yield), Mp = 87–88℃. 1H NMR (400 MHz, 
CDCl3): δ 7.96 (d, J = 2.0  Hz, 1  H), 7.90–7.86 (m, 3  H), 
7.63 (dd, J = 8.6, 2.0  Hz, 1  H), 7.55–7.53 (m, 2  H), 5.95 
(s, 1 H), 5.70 (s, 1 H), 4.34 (s, 2 H). 13C NMR (100 MHz, 
CDCl3): δ 136.63, 135.92, 133.30, 133.21, 128.76, 128.42, 
127.69, 126.76, 126.73, 125.61, 124.07, 122.60, 60.82. 
HRMS (ESI): calcd for C14H11D3O2NaS [M + Na]+ 
272.0801, found 272.0804.

(2-(methylsulfonyl)ethene-1,1-diyl)dibenzene (5a)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a white liq-
uid (47.5 mg, 92% yield). 1H NMR (400 MHz, CDCl3): δ 
7.51–7.38 (m, 8 H), 7.33–7.30 (m, 2 H), 6.90 (s, 1 H), 2.72 
(s, 3 H). 13C NMR (100 MHz, CDCl3): 154.9, 139.8, 135.7, 
130.5, 129.9, 129.6, 128.8, 128.4, 128.1, 43.3. HRMS (ESI): 
calcd for C15H15O2S [M + H]+ 259.0787, found 259.0791.

4,4’-(2-(methylsulfonyl)ethene-1,1-diyl)bis(methylbenzene) 
(5b)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a white liq-
uid (53.8 mg, 94% yield). 1H NMR (400 MHz, CDCl3): δ 
7.30 (brs, 4 H), 7.20 (brs, 4 H), 6.83 (s, 1 H), 2.71 (s, 3 H), 
2.45 (s, 3 H), 2.41 (s, 3 H). 13C NMR (100 MHz, CDCl3): 
δ 140.87, 139.71, 136.56, 132.96, 129.96, 129.42, 129.05, 
128.41, 127.03, 43.33, 21.46, 21.31. HRMS (ESI): calcd for 
C17H18O2NaS [M + Na]+ 309.0925, found 309.0928.

4,4’-(2-(methylsulfonyl)ethene-1,1-diyl)bis(methoxybenzene) 
(5c)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow 
solid (60.4  mg, 95% yield), Mp = 156–157℃. 1H NMR 
(400  MHz, CDCl3): δ 7.36 (d, J = 8.8  Hz, 2  H), 7.25 (d, 
J = 8.9 Hz, 2 H), 6.99 (d, J = 8.8 Hz, 2 H), 6.90 (d, J = 8.9 Hz, 
2 H), 6.75 (s, 1 H), 3.89 (s, 3 H), 3.86 (s, 3 H), 2.71 (s, 3 H). 
13C NMR (100  MHz, CDCl3): δ 161.52, 160.64, 154.43, 
131.79, 131.67, 130.09, 127.95, 125.48, 114.02, 113.68, 
55.40, 55.29, 43.19. HRMS (ESI): calcd for C17H18O4NaS 
[M + Na]+ 341.0823, found 341.0823.

(E)-1-chloro-4-(2-(methylsulfonyl)vinyl)benzene (5d)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (36.7  mg, 85% yield). 1H NMR (400  MHz, CDCl3): 
δ 7.62 (d, J = 15.5  Hz, 1  H), 7.50–7.43 (m, 4  H), 6.93 (d, 
J = 15.5  Hz, 1  H), 3.07 (s, 3  H). 13C NMR (100  MHz, 
CDCl3): δ 142.71, 137.58, 130.62, 129.83, 129.58, 126.78, 
43.32. HRMS (ESI): calcd for C9H10O2ClS [M + H]+ 
217.0084, found 217.0087.

(E)-4-(2-(methylsulfonyl)vinyl)benzyl 2-(4-(4-chlorobenzoyl)
phenoxy)-2-methylpropanoate (5e)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid (82.9  mg, 81% yield). 1H NMR (400  MHz, CDCl3): 
δ 7.72 (d, J = 8.4  Hz, 2  H), 7.67–7.63 (m, 2  H), 7.59 (s, 
1  H), 7.49–7.46 (m, 4  H), 7.31–7.29 (m, 2  H), 6.95 (d, 
J = 15.5  Hz, 1  H), 6.81 (d, J = 8.8  Hz, 2  H), 5.24 (s, 2  H), 
3.07 (s, 3 H), 1.72 (s, 6 H). 13C NMR (100 MHz, CDCl3): 
δ 194.23, 173.48, 159.53, 143.16, 138.61, 138.44, 136.28, 
132.05, 131.25, 130.45, 129.01, 128.79, 128.69, 126.91, 
117.17, 79.46, 66.57, 43.30, 25.50. HRMS (ESI): calcd for 
C27H26O6ClS [M + H]+ 513.1133, found 513.1140.

5-isopropyl-2-methylphenyl (E)-4-(2-(methylsulfonyl)vinyl)
benzoate (5f)
Following the general procedure, using (petroleum 
ether: EtOAc = 9: 1) as the eluant afforded a yellow liq-
uid(57.3  mg, 80% yield). 1H NMR (400  MHz, CDCl3): 
δ 8.31 (d, J = 8.3  Hz, 2  H), 7.76–7.69 (m, 3  H), 7.24 (d, 
J = 7.8 Hz, 1 H), 7.12–7.07 (m, 2 H), 7.03 (m, 1 H), 3.11 
(s, 3  H), 2.94 (p, J = 6.9  Hz, 1  H), 2.22 (s, 3  H), 1.29 (d, 
J = 6.9 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ 164.08, 
149.31, 148.36, 142.58, 136.80, 131.93, 131.11, 130.95, 
128.88, 128.71, 127.28, 124.54, 119.78, 43.24, 33.68, 
24.00, 15.92. HRMS (ESI): calcd for C20H23O4S [M + H]+ 
359.1311, found 359.1313.
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