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Synthesis, and antibacterial activities

of novel 1,3,4a,9-tetraza-4H-fluoren-2-amines
incorporating phenoxy-N-arylacetamide,
pyrazole, and 2-(4-(1-phenyl-1H-pyrazol-3-yl)
phenoxy)-N-arylacetamide moieties

Reham E. Abdelwahab', Ahmed H. M. Elwahy'", Nada S. Ibrahim? Amr M. Abdelmoniem' and Ismail A. Abdelhamid"

Abstract

A ring annelation reaction was used to successfully prepare benzol4,5]imidazo[1,2-al[1,3,5]triazines (Systematic
Name: 1,3,4a,9-tetraza-4H-fluoren-2-amines) tethered to phenoxy-N-arylacetamide, pyrazole, and 2-(4-(1-phenyl-
1H-pyrazol-3-yl)phenoxy)-N-arylacetamide moieties utilizing 1-(1H-benzold]imidazol-2-yl)guanidine and the proper
aldehydes as precursors. 2-(Phenylamino)ethyl fragment of compound 7 was cleaved off and compound 8 was
formed. The constitutions of the novel compounds were confirmed based on spectral data. The antibacterial
activity was evaluated for the prepared compounds against two gram-negative and two gram-positive bacteria.
Among them, compound 12b (inhibition zone 16+0.7 mm) was the most promising against S. aureus compared
to Gentamycin (15+0 mm). Also, compounds 5a and 5d exerted comparable antibacterial activity (inhibition zones
13+ 1.4 and 13+£2.1 mm), respectively to Gentamycin against S. aureus. Minimum inhibitory concentration (MIC)
evaluation against S. aureus showed that compound 12b had the lowest MIC value (78.1 ug/mL).

Keywords Ring annelation, 1-(1H-benzold]imidazol-2-yl)guanidine, 1,3,4a,9-tetraza-4H-fluoren-2-amines, phenoxy-N-
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Introduction

Benzimidazoles are the fundamental component of a
wide range of biochemical and medicinal substances
with varying chemical and pharmacological properties.
Numerous derivatives of benzimidazoles have a variety
of biological characteristics, including antitumor [1-6],
antifungal [7, 8], antiviral [9-11], antihistaminic [12-14]
antibacterial [15, 16], and anticonvulsant activity [17, 18].
Representative examples of drugs containing benzimid-
azole moiety are depicted in Fig. 1 (compounds I [19-21],
11 [22-24], IIT [25-27]).

Moreover, triazines are benzene-like six-membered
planar structures having three nitrogen atoms [28]. The
triazine scaffold is the most well-known heterocycle, with
a wide spectrum of biological activity [28—31]. There are
three triazine isomers, namely, 1,2,4-triazine, 1,2,3-tri-
azine, and 1,3,5-triazine. 1,3,5-Triazine is the most stud-
ied due to its distinct chemical structure and medicinal
capabilities [30, 31]. For example, 1,3,5-triazine-thiazoli-
dine-dione IV [30] has been reported as a DPP-4 inhibi-
tor with antibacterial activity targeting the S1 pocket for
the treatment of type 2 diabetes [30] (Fig. 1). Also, tri-
azine dimer V [31] has been reported as an antileishman-
ial agent (Fig. 1) [31].

Besides, it was noted that compounds with acetamide
linkages as core structures have drawn a lot of interest
because of their possible therapeutic applications, includ-
ing anticancer [32, 33], haemolytic [34], antioxidant [35],
antitubercular [36], antiurease [34], antimicrobial [34, 37,
38], anti-inflammatory [39], anticonvulsant [40], analge-
sic [38, 39], anti-COVID-19 [41], and antituberculosis
[42].
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Moreover, pyrazoles, a five-membered heterocycle with
two neighboring nitrogen atoms, are the fundamental
structures found in a variety of compounds with diverse
biological activities such as anticancer [43, 44], anti-
inflammatory [45, 46], antimicrobial [46, 47], antioxidant
[48, 49], and anticonvulsant [50] activities. Furthermore,
bis-heterocycles, which consist of two bioactive hetero-
cycles linked by a flexible linker, have been reported to
possess plant growth regulative, anticancer, antibacterial,
and fungicidal properties [51-55]. They can also be used
as chelating agents, electrical conducting compounds
[56], and metal ligands [57].

Fluorene is one example of a polyaromatic hydrocar-
bon (PAH), an essential precursor used in manufacturing
as a component of plastics, insecticides, resins, dyes, and
medications [58—60]. It was found that replacing one or
more carbon atoms with heteroatoms results in signifi-
cant alterations of its biological activity [61, 62]. Thus, in
continuation of our interest in the synthesis of bioactive
heterocycles [63—87], we aim to prepare hybrid hetero-
cycles based on 1,3,4a,9-tetraza-4H-fluoren-2-amines
tethered phenoxy-N-arylacetamide, and pyrazole moiety.

Results and discussion

According to the preceding general procedure, the reac-
tion of o-phenylenediamine 1 with cyanoguanidine 2 in
a refluxing water-HCI mixture produces 1-(1H-benzol[d]
imidazol-2-yl)guanidine 3 (Scheme 1).

The reaction of  1-(1H-benzo[d]imidazol-2-yl)
guanidine 3 with 2-(4-formylphenoxy)-N-arylacet-
amides 4a-d in ethanol in the presence of piperi-
dine as a basic catalyst leads to the formation of
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Fig. 1 Some drugs containing benzimidazole or [1,3,5]triazine cores
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Scheme 2 Synthesis of 2-(4-(dihydrobenzo[4,5]imidazo[1,2-al[1,3,5]triazin-4-yl) phenoxy)-N-arylacetamides 5a-d
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Fig. 2 Structures of 9H-fluorene and1,3,4a,9-tetraza-4H-fluoren-2-amines 5

2-(4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)phenoxy)-N-phenylacetamides 5a-d in
which the benzo[4,5]imidazo[1,2-4][1,3,5]triazine moiety
is linked to phenoxy-N-arylacetamide moieties (Scheme
2).

The constitution of the formed products was proved
based on spectral data. For example, the mass spectrum
of 5a revealed a molecular ion peak at m/z 412. The IR
spectrum of compound 5a showed characteristic N-H
stretching bands at v 3449 and 3325 cm™! and a strong
absorption band at v 1674 cm™! for the carbonyl group.
The 'H NMR spectrum displayed a singlet at § 4.69 ppm
for OCH, protons besides a multiplet at & 6.68-7.62
ppm integrated for 14 protons corresponding to the
aromatic protons and H-4. It also demonstrated three

singlet signals (exchangeable with D,0) at § 6.39 (2 H),
7.98 (1H), and 10.06 (1H) ppm assigned to NH, and 2
NH protons. In addition, the *C NMR showed peaks at
8 65.6 and 67.1 ppm for aliphatic carbons OCH, and C-4
as well as a characteristic peak at § 166.4 for the amide
group. Peaks of the aromatic carbons appear at their
appropriate position.

Compounds 5 can be seen as 1,3,4a,9-tetraza-4H-fluo-
ren-2-amines, as illustrated in Fig. 2. It has been observed
that replacing one or more carbon atoms of a carbocyclic
molecule with heteroatoms results in significant altera-
tions of its biological activity [88-91].

However, the formed dihydrobenzo[4,5]imidazo[1,2-
a][1,3,5]triazine could exist in three tautomeric struc-
tures, namely 3,4-dihydro- 5, 1,4-dihydro- 5(I), and
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4,10-dihydro- 5(II) tautomeric forms, the 3,4-dihydro-
isomer is predominant in the crystal form, as indicated in
related work [92] (Fig. 3).

On the other hand, trials to prepare the benzo[4,5]
imidazo[1,2-a][1,3,5]triazines 7 which are linked to
benzoyloxyacetamide via the direct reaction of 3 with
2-o0xo0-2-(phenylamino)ethyl 4-formylbenzoate deriva-
tives 6a-d under the same condition of absolute ethanol
at reflux in presence of a catalytic amount of piperidine
did not succeed. Instead, in all these examples, only ethyl
4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)benzoate 8 was obtained as the sole product
(Scheme 3).

Compound 8 was formed due to the transesterification
of the initially formed 7a-d as indicated in the following
mechanism. The nucleophilic attack of ethanol to the car-
bonyl ester of 7 leads to the tetrahedral intermediate 9
that was deprotonated in the presence of a basic catalyst
(piperidine) into the intermediate 10 that affords the final
isolable product 8 (Scheme 4).

The chemical constitution of compound 8 was
undoubtedly confirmed by the aid of spectral tools and
elemental analysis. The mass spectrum showed a molec-
ular ion peak at m/z 335, consistent with the proposed
structure. The IR spectrum revealed the presence of a
characteristic absorption band at v 1713 cm™! for the
ester carbonyl stretch, and broad absorption bands at v
3418 and 3248 cm™! for NH, and NH group. The 'H NMR
further confirmed the transesterification as it showed the
absence of any peaks for OCH, and amide NH protons.
Instead, ethoxy protons appeared as a characteristic trip-
let and quartet at 8 1.26 and 4.25 ppm (p/=7.2 Hz). NH,
and NH protons gave peaks at § 6.42 (2 H) and 8.09 (1H)
ppm, respectively. Other peaks for aromatic protons and
H-4 exist in their expected position. '>C NMR spectrum
showed peaks for carbons of ethoxy group at § 14.2 and
61.1 ppm. It revealed also peaks at § 65.4 ppm for C-4,
and at § 165.3 ppm for ester carbonyl. Peaks of other aro-
matic carbons appeared as expected.
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To achieve the concept of molecular hybridization,
we attempt to introduce the biologically active pyrazole
ring into the structure of 1,3,4a,9-tetraza-4H-fluoren-
2-amines (benzo[4,5]imidazo[1,2-a][1,3,5]triazines).
For this purpose, 1-phenyl-3-aryl-1H-pyrazole-4-carb-
aldehydes 11a-c were chosen as starting materials and
were allowed to react with 3 in ethanol at reflux in the
presence of a few drops of piperazine. Interestingly,
benzo[4,5]imidazo[1,2-4][1,3,5]triazines 12a-c which are
linked to a pyrazole moiety at position-4 has been gener-
ated in good yields (Scheme 5).

The chemical composition of the products was veri-
fied by the different spectral tools. For example, the
mass spectrum of 12b (Ar=4-MeC¢H,) demonstrated a
molecular ion peak at m/z 419 which fits with the pro-
posed structure. The IR spectrum of compound 12
showed absorption bands at v 3546 and 3325 cm™! for
NH, and NH stretching vibration. The 'H NMR indicated
the presence of a signal at § 2.24 ppm for methyl protons,
a doublet at § 6.57 ppm for H-4, a characteristic signal at
8 9.03 ppm for pyrazole-H5, and two singlet signals at &
7.04 (2 H), 9.48 (1H) ppm for NH, and NH, respectively.
Signals for the aromatic protons appear at their appropri-
ate position. The 3C NMR spectrum showed character-
istic peaks at & 20.9 and 59.9 ppm for methyl and C-4,
respectively. Peaks for other carbons appear in their
expected position.

Stimulated by the previously mentioned results, we
broadened the scope of this reaction to include the syn-
thesis of 1,3,4a,9-tetraza-4H-fluoren-2-amines 14a-d that
are linked to 2-(4-(1-phenyl-1H-pyrazol-3-yl)phenoxy)-
N-arylacetamide moieties at position-4 in good yields
by the direct reaction of the appropriate 2-(4-(4-formyl-
1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-arylacetamides
13a-d with the corresponding mole equivalent of 3
(Scheme 6).

The chemical structure of the resulting compounds
14a-d was confirmed based on spectral analyses.
For instance, the mass spectrum of 14a indicated a
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Fig. 3 Isomeric structures of [4,5]imidazo[1,2-a][1,3,5]triazines 5
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Scheme 3 Synthesis of ethyl 4-(2-amino-3,4-dihydrobenzo(4,5]imidazo[1,2-al(1,3,5]triazin-4-yl)benzoate 8
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Scheme 4 Unexpected formation of ethyl 4-(2-amino-3,4-dihydrobenzo(4,5]imidazo[1,2-al(1,3,5]triazin-4-yl)benzoate 8

molecular-ion peak at m/z 554 which is relative to the spectrum displayed two characteristic singlets at § 4.79
proposed structure. The IR spectrum showed character- and 9.08 ppm for OCH, and pyrazole-H5, respectively. It
istic absorption bands at v 3549, 3325, 1674 cm™! for  showed further multiplets at 8§ 6.93—7.99 ppm integrated
NH,, NH, and amide C=O, respectively. The 'H NMR  for 21 protons for the amino group, H-4, and aromatic
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Scheme 6 Synthesis of 1,3,4a,9-tetraza-4H-fluoren-2-amines 14a-d that are linked to 2-(4-(1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-arylacetamide moieties

Table 1 Antibacterial activity of the synthesized compounds
at a concentration of 10 mg/mL. The data was mean £ standard
deviation (SD) of two separate experiments performed in
triplicats

Inhibition zone diameter (mm)+SD at 10 mg/mL

Sample S.aureus B. subtilis E. coli P.aeruginosa
5a 13+£14 14+£0 NA 14+£0
5b NA NA NA NA

5¢c 12+0 NA NA 13+£14
5d 13+£2.1 16+£0.7 NA 16+£0.7
8 10+0 NA NA NA
12a NA 14+0 NA NA
12b 16+£0.7 14+£14 NA 14+£14
12¢ NA NA NA NA

14a NA NA NA NA
14b NA NA NA NA
14c NA NA NA NA
14d NA NA NA 10+0
Gentamycin -~ 150 20£14 2021 21£0
5% DMSO 0.0 0.0 0.0 0.0

(Gentamycin, 10 pg/disc) was positive control for gram-positive and gram-
negative bacteria. *NA: No activity

protons, as well as two D,0-exchangeable singlets at
8 8.67 and 10.12 ppm for the two NH groups. The 3C
NMR spectrum shows peaks at § 67.1 and 166.5 ppm for
OCH, and amide C=O. Other peaks are present in close
agreement with the proposed structure.

Antibacterial activity

Agar well diffusion assay was used to assess the anti-
bacterial activity of all the prepared compounds against
Staphylococcus aureus (S. aureus) and Bacillus subtilis
(B. subtilis) (gram-positive bacteria), Escherichia coli (E.
coli) and Pseudomonas aeruginosa (P. aeruginosa) (gram-
negative bacteria). The results showed that compounds
5a, 5d, and 12b were promising against S. aureus with
the inhibition zones of 13+1.4,13+2.1, and 16 +0.7 mm,
respectively, and the most effective one was compound
12b compared to Gentamycin (15+0 mm) (Table 1).
Concerning B. subtilis, compounds 5a, 5d, 12a, and
12b showed moderate activity with the inhibition zones
of 1440, 16+0.7, 14+0, and 14 +1.4 mm, respectively,
compared to Gentamycin (20+1.4). Compound 5d had
the strongest action against P aeruginosa (16 +0.7 mm),
compared to Gentamycin (21+0 mm). Compounds 5a,
5¢, and 12b had moderate activity, whereas compound
14d had the lowest activity (10+0 mm) against P aeru-
ginosa compared to Gentamycin. All the synthesized
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Table 2 The effect of different concentrations (10-0.0195 mg/
mL) of 5a, 5¢, 5d, 8, and 12b on S. Aureus. The data was the
mean of duplicate results +standard deviation (SD)

Concentra-

S. aureus (Inhibition zone (mm) £ SD)

tion (mg/mL) 54 5¢ 5d 8 12b
10 14414 12+0 125+21 1040  155+07
5 13407 1140 10+0.7 1040  14+0
25 12+0 1140 10+0 9+07 13%1
1.25 1140 10407 940 9+07 13+0
0.625 0 9+0 0 0 1241
03125 0 0 0 0 12408
0.1563 0 0 0 0 115+0
00781 0 0 0 0 1140
0.0391 0 0 0 0 0
0.0195 0 0 0 0 0

Table 3 Minimum inhibitory concentration (MIC) of compounds
5a, 5¢, 5d, 8, and 12b against S. Aureus

Compound S.aureus
MIC (pg/mL)

5a 1250

5¢ 625

5d 1250

8 1250

12b 78.1

compounds had no action against E. coli. So, the most
promising results were shown against S. aureus com-
pared to Gentamycin. Therefore, S.aureus strain was
chosen for further MIC evaluation. Tables 2 and 3; Fig. 4
showed the results of MIC determination. It was found
that compound 12b had the lowest MIC value (78.1 pg/
mL).

Structure-activity relationship
Figure 5 shows a design for the prepared series of
benzo[4,5]imidazo[1,2-a4][1,3,5]triazines 5,12, and 14.
The structure-activity relationship demonstrated that
the derivatives 5a-d and 12a-c performed better than
the derivatives 14a-d. Compound 5d, which included a
4-methoxyphenyl group (an electron-donating group),
had the highest antibacterial activity against S. aureus,P.
aeuroginosa, and B. subtilis among the 5a-d derivatives.
Compound 5a, which included an unsubstituted phe-
nyl group, had a moderate action against S. aureus,P
aeruginosa and B. subtilis. The p-tolyl group (electron-
donating group) in derivative 5¢ demonstrated modest
antibacterial activity against S. aureus and P. aeruginosa.
On the other hand, derivative 5b with 4-chlorophenyl
moiety (electron-withdrawing group) reduced antibac-
terial efficacy against the tested bacterial strains. The
unsubstituted phenyl group in 12a demonstrated mod-
erate activity against B. subtilis, whereas derivative 12b
with p-tolyl group exhibited promising action against
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S. aureus and moderate activity against B. subtilis and
P aeruginosa, respectively. Compound 12c, on the
other hand, had decreased activity against all the strains
tested. Among compounds 14a-d, only 14d containing a
4-methoxyphenyl group was effective. It showed limited
efficacy against P. aeruginosa.

Conclusion

We have described an effective method for creating
novel annelated 1,3,4a,9-tetraza-4H-fluoren-2-amines
ring systems incorporating phenoxy-N-arylacetamide,
and pyrazole moieties. The reaction involves reacting
one-mole equivalent of 1-(1H-benzo[d]imidazol-2-yl)
guanidine with one-mole equivalent of the appropriate
aldehydes. We concluded that compound 5d’s promising
action against S. aureus and P. aeruginosa, as well as its
modest activity against B. subtilis, might be attributed to
its inhibition of the MurG enzyme, as indicated by our
molecular docking studies. Furthermore, the promising
efficacy of compounds 5a and 5c against S. aureus might
be attributed to their inhibitory action on bacterial tyro-
syl tRNA synthetase and MurG.

Supplementary file Compounds 5a is represented here
as a representative example. Full experimental details of
all compounds and spectral data are represented in the
supplementary file.

“Experimental

“Melting points were measured with using a Stuart melt-
ing point apparatus and were uncorrected. The IR spectra
were recorded using Vector 22 FTIR-spectrophotom-
eter (Brucker, Germany) as KBr pellets. The 'H and *C
NMR spectra were recorded in DMSO-d, as a solvent
with Mercury VXR-300 NMR spectrometer (Varian,
USA) operating at 300 MHz and 75 MHz, using TMS as
an internal standard. Chemical shifts were reported as §
values in ppm. Mass spectra were recorded with GCMS-
QP-1000 EX mass spectrometer (Shimadzu, Japan) in EI
(70 eV) model. The elemental analyses were performed
using CHNS-932 Vario elemental analyzer (LECO, USA)
at the Micro Analytical Centre, Cairo University”.

General method for the synthesis of compounds 5a-d, 8,
12a-c and 14a-d

“A solution of 1-(1H-benzo[d]imidazol-2-yl)guanidine (3)
(175 mg, 1 mmol) and the appropriate aldehyde (4a-d),
(6a-d), (11a-c), or (13a-d) (1 mmol) in ethanol (10 mL)
containing piperidine (2 drops) was heated at reflux for
3 h. The reaction mixture is allowed to cool to ambient
temperature. A precipitate is formed which is subse-
quently filtered, washed with ethanol, and recrystallized
from EtOH\dioxane (3:1, v/v) mixture to give the titled
compound”
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Fig. 4 Agar well diffusion assay for estimating the MIC of compounds 5a, 5¢, 5d, 8 and 12b against S. aureus. The range of serial dilution concentrations
was 1=10mg/mL to 10=0.0195 mg/mL. CN10 means Gentamycin positive control

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-phenylacetamide (5a)

Colorless powder (350 mg, 85%); Mp 235-237 °C;
IR (KBr): v 3449 (NH,), 3325 (2NH), 1674 (C=0),
1605 (C=N), 1520 (C=C) cm™%; 'H NMR (300 MHz,
DMSO-dg) § 4.69 (s, 2 H, OCH,), 6.39 (s, 2 H, NH,,
D,0O exchangeable), 6.70 (d, /=6.9 Hz, 2 H, Ar-H), 6.78
(t, J=7.5 Hz, 1H, Ar-H), 6.93 (t, J=7.5 Hz, 1H, Ar-H),
7.02 (d, /J=8.6 Hz, 2 H, Ar-H), 7.08 (d, /=8.4 Hz, 1H,
H4), 7.22 (d, /=8.0 Hz, 1H, Ar-H), 7.26-7.36 (m, 4 H,
Ar-H), 7.61 (d, J=8.6 Hz, 2 H), 7.98 (br s, 1H, NH, D,O
exchangeable), 10.06 (s, 1H, NH, D,0O exchangeable)
ppm; 3C NMR (75 MHz, DMSO-dy): 6 65.6, 67.1, 108.4,
115.0, 1159, 119.0, 119.8, 120.9, 123.7, 127.8, 128.8,
131.2, 133.2, 138.4, 143.1, 153.5, 155.4, 158.4, 166.4
ppm; MS (EL 70 eV): m/z (%) 412 ]M*[; Anal. Calcd for
Cy3H,yNO,: C, 66.98; H, 4.89; N, 20.38. Found: C, 66.83;
H, 4.70; N, 20.18%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]limidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-(4-chlorophenyl)acetamide (5b)

Pale yellow powder (370 mg, 83%); Mp 200-202 °C;
IR (KBr): v 3448 (NH,), 3320 (2NH), 1670 (C=0),
1600 (C=N), 1519 (C=C) cm™}; '"H NMR (300 MHz,

DMSO-d) 8 4.69 (s, 2 H, OCH,), 6.34 (s, 2 H, NH,, D,O
exchangeable), 6.69 (d, /=7.2 Hz, 2 H, Ar-H), 6.76 (t,
J=7.2 Hz, 1H, Ar-H), 691 (t, J=7.5 Hz, 1H, Ar-H), 7.01
(d, J=8.7 Hz, 2 H, Ar-H), 7.22 (d, J=7.7 Hz, 1H, H4),
7.32 (d, /=8.8 Hz, 2 H, Ar-H), 7.36 (d, /=8.9 Hz, 2 H,
Ar-H), 7.65 (d, J=8.9 Hz, 2 H, Ar-H), 7.92 (s, 1H, NH,
D,O exchangeable), 10.20 (s, 1H, NH) ppm; *C NMR
(75 MHz, DMSO-d,) & 65.9, 67.3, 108.3, 114.6, 116.0,
118.6, 120.1, 120.7, 121.1, 128.1, 129.7, 131.7, 132.6,
1334, 135.2, 1434, 154.9, 158.8, 166.6 ppm; MS (EI,
70 eV): m/z (%) 446 IM*[ Anal. Calcd for Cy3H;,CIN,O,:
C, 61.82; H, 4.29; N, 18.81. Found: C, 61.66; H, 4.11; N,
18.64%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-(p-tolyl)acetamide (5¢)

Colorless powder (354 mg, 83%); Mp 204-206 °C; IR
(KBr): v 3448 (NH,), 3328 (2NH), 1677 (C=0), 1609
(C=N), 1520 (C=C) cm™; '"H NMR (300 MHz, DMSO-
dg) 6 2.25 (s, 3 H, CH;), 4.66 (s, 2 H, OCH,), 6.38 (s, 2 H,
NH,, D,0O exchangeable), 6.69 (d, /J=6.6 Hz, 2 H, Ar-H),
6.76 (t, /=7.3 Hz, 1H, Ar-H), 6.92 (t, J=7.1 Hz, 1H,
Ar-H), 7.01 (d, J=8.1 Hz, 2 H, Ar-H), 7.11 (d, J=7.6 Hz,
2 H, Ar-H), 7.21 (d, J=7.6 Hz, 1H, H4), 7.33 (d, /=8.2 Hz,
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Fig. 5 A general structure of the prepared benzo[4,5]imidazo[1,2-al[1,3,5]triazines 5,12, and 14

2 H), 7.49 (d, J=7.8 Hz, 2 H, Ar-H), 7.96 (br s, 1H, NH,
D,O exchangeable), 9.96 (s, 1H, NH, D,O exchange-
able) ppm; *C NMR (75 MHz, DMSO-d,): § 20.5, 65.5,
67.1,108.3, 115.0, 115.9, 118.9, 119.9, 120.5, 120.8, 127.7,
129.1,131.3,132.7, 133.2, 135.9, 143.4, 155.4, 158.4, 166.1
ppm; MS (EIL, 70 eV): m/z (%) 426 ]M*[ Anal. Calcd for
C,,Hy,NO,: C, 67.59; H, 5.20; N, 19.71. Found: C, 67.39;
H, 5.02; N, 19.53%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]limidazo[1,2-a][1,3,5]

triazin-4-yl)phenoxy)-N-(4-methoxyphenyl)acetamide (5d)
Grey powder (380 mg, 86%); Mp 240-242 °C; IR (KBr):
v 3448 (NH,), 3330 (2NH), 1678 (C=0), 1608 (C=N),
1522 (C=C) cm™%; '"H NMR (300 MHz, DMSO-dj) § 3.72
(s, 3 H, OCH,), 4.65 (s, 2 H, OCH,), 6.37 (s, 2 H, NH,,
D,0O exchangeable), 6.69 (d, /=6.2 Hz, 2 H, Ar-H), 6.77
(t, J=7.5 Hz, 1H, Ar-H), 6.88 (d, /=8.2 Hz, 2 H, Ar-H),
6.93 (d, /=7.5 Hz, 1H, Ar-H), 7.02 (d, /=7.9 Hz, 2 H,
Ar-H), 721 (d, J=7.7 Hz, 1H, H4), 7.33 (d, /=8.1 Hz,

2 H, Ar-H), 7.51 (d, /J=8.7 Hz, 2 H, Ar-H), 7.95 (s, 1H,
NH, D,0O exchangeable), 9.91 (s, 1H, NH, D,O exchange-
able) ppm; *C NMR (75 MHz, DMSO-d,) § 58.1, 65.5,
69.1, 108.3, 115.0, 115.5, 116.0, 119.8, 120.1, 120.8, 129.1,
131.7,132.3, 133.4, 135.9, 144.3, 154.5, 158.4, 160.3, 167.4
ppm; MS (EI, 70 eV): m/z (%) 442 IM*[ Anal. Calcd for
C,,HyoNgOs: C, 65.15; H, 5.01; N, 18.99. Found: C, 64.97;
H, 4.87; N, 18.82%.

Ethyl 4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)benzoate (8)

Wite powder (295 mg, 88%); Mp 208-210 °C; IR (KBr):
hv 3418 (NH,), 3248 (NH), 1713 (C=0), 1628 (C=N),
1528 (C=C) cm™'; 'H NMR (300 MHz, DMSO-d,) & 1.28
(t, J=7.2 Hz, 3 H, COOCH,CH,;), 429 (q, J=7.2 Hz, 2 H,
COOCH,CH,), 6.42 (s, 2 H, NH,, D,O exchangeable),
6.74 (d, J=7.5 Hz, 1H, H4), 6.79 (t, J=7.4 Hz, 1H, Ar-H),
6.84 (s, 1H, H4), 6.94 (t, J=7.4 Hz, 1H, Ar-H), 7.24 (d,
J=7.8 Hz, 1H, Ar-H), 7.48 (d, J=7.9 Hz, 2 H, Ar-H), 7.96
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(d,J=7.7 Hz, 2 H, Ar-H), 8.09 (s, 1H, NH, D,O exchange-
able) ppm; *C NMR (75 MHz, DMSO-d,): § 14.2, 61.1,
65.4, 108.5, 116.1, 119.3, 121.4, 126.6, 128.7, 130.0, 130.7,
131.1, 143.2, 145.3, 155.2, 165.3 ppm; MS (EL, 70 eV): m/z
(%) 335 IM*[. Anal. Calcd for C;gH;,N;O,: C, 64.47; H,
5.11; N, 20.88. Found: C, 64.33; H, 4.95; N, 20.70%.

4-(1,3-Diphenyl-1H-pyrazol-4-yl)-3,4-dihydrobenzo[4,5]
imidazo[1,2-a][1,3,5]triazin-2-amine (12a)

Colorless powder (352 mg, 87%); Mp 280-282 °C; IR
(KBr): v 3540 (NH,), 3325 (NH), 1604 (C=N), 1520
(C=C) cm % 'H NMR (300 MHz, DMSO-d,) § 6.40 (d,
J=79 Hz, 1H, H4), 6.51(s, 2 H, NH,, D,0O exchange-
able), 6.69 (t, /J=7.6 Hz, 1H, Ar-H), 6.88 (d, /=7.2 Hz,
2 H, Ar-H), 7.15 (d, J=7.8 Hz, 1H, Ar-H), 7.33 (t,
J=7.4 Hz, 1H, Ar-H), 7.41 (d, J=6.6 Hz, 2 H, Ar-H), 7.50
(t, J=7.7 Hz, 3 H, Ar-H), 7.65 (d, J=7.6 Hz, 2 H, Ar-H),
7.90 (d, J=8.0 Hz, 2 H, Ar-H), 8.25 (br s, 1H, NH, D,O
exchangeable), 8.76 (s, 1H, pyrazole-H5) ppm; *C NMR
(75 MHz, DMSO-d,): § 62.6, 111.2, 118.1, 118.5, 119.2,
122.9, 123.8, 127.0, 128.0, 128.2, 128.9, 129.2, 1294,
129.6, 130.2, 137.6, 139.5, 150.5, 151.4, 157.7 ppm; MS
(EL 70 eV): m/z (%) 405 IM*[ Anal. Calcd for Cy,H;gN:
C, 71.09; H, 4.72; N, 24.18. Found: C, 70.96; H, 4.56; N,
24.04%.

4-(1-Phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-3,4-
dihydrobenzol[4,5]imidazo[1,2-a][1,3,5]triazin-2-amine
(12b)

Wite powder (369 mg, 88%); Mp 295-297 °C; IR (KBr):
hv 3546 (NH,), 3325 (NH), 1604 (C=N), 1525 (C=C)
cm™}; '"H NMR (300 MHz, DMSO-d,) § 2.34 (s, 3 H,
CH,), 6.58 (d, /=7.9 Hz, 1H, H4), 7.04 (s, 2 H, NH,, D,O
exchangeable), 7.17 (d, J=7.8 Hz, 1H, Ar-H), 7.23 (d,
J=7.6 Hz, 2 H, Ar-H), 7.33 (d, J=7.9 Hz, 3 H, Ar-H), 7.43
(d, J=8.0 Hz, 2 H, Ar-H), 7.52 (t, J=7.7 Hz, 3 H, Ar-H),
7.89 (d, J=8.2 Hz, 2 H, Ar-H), 9.03 (s, 1H, pyrazole-H5),
9.48 (br s, 1H, NH, D,O exchangeable) ppm; *C NMR
(75 MHz, DMSO-dy): § 20.9, 59.9, 110.2, 111.7, 1185,
119.2, 1229, 123.8, 127.0, 128.0, 128.2, 128.9, 129.2,
129.4, 129.7, 130.1, 138.2, 139.0, 150.8, 151.2, 156.7
ppm; MS (EIL, 70 eV): m/z (%) 419 ]M*[ Anal. Calcd for
CysHy No: C, 71.58; H, 5.05; N, 23.37. Found: C, 71.43; H,
4.95; N, 23.18%.

4-(3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-3,4-
dihydrobenzol[4,5]imidazo[1,2-a][1,3,5]triazin-2-amine
(12¢)

Colorless powder (374 mg, 86%); Mp 287-289 °C; IR
(KBr): v 3549 (NH,), 3325 (NH), 1674 (C=0), 1605
(C=N), 1528 (C=C) cm™}; '"H NMR (300 MHz, DMSO-
dg) 6 3.78 (s, 3 H, OCHj;), 6.50 (d, J=7.6 Hz, 1H, H4), 6.92
(s, 2 H, NH,, D,O exchangeable), 6.97 (d, J=8.3 Hz, 2 H,
Ar-H), 7.07 (d, J=7.5 Hz, 1H, Ar-H), 7.13 (s, 2 H, Ar-H),
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7.27 (d, J=7.8 Hz, 1H, Ar-H), 7.35 (d, J=8.1 Hz, 1H,
Ar-H), 7.50 (d, J=6.1 Hz, 4 H, Ar-H), 7.88 (d, J=8.1 Hz,
2 H, Ar-H), 8.37 (s, 1H, NH, D,0O exchangeable), 8.87 (s,
1H, pyrazole-H5) ppm; *C NMR (75 MHz, DMSO-dy): §
55.4, 61.8, 110.5, 111.9, 118.4, 119.2, 122.9, 123.8, 127.2,
128.16, 128.18, 128.9, 129.3, 129.4, 129.7, 138.0, 138.6,
150.6, 151.2, 156.7, 159.4 ppm; MS (EL 70 eV): m/z (%)
435 IM*[ Anal. Caled for C,;H,N,O: C, 68.95; H, 4.86;
N, 22.51. Found: C, 68.79; H, 4.69; N, 22.39%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
phenylacetamide (14a)

White powder (415 mg, 75%); Mp 240-242 °C; IR (KBr):
v 3549 (NH,), 3325 (NH), 1674 (C=0), 1605 (C=N),
1528 (C=C) cm™; 'H NMR (300 MHz, DMSO-dy): §
4.79 (s, 2 H, OCH,), 6.92 (s, 1H, H4), 7.09-7.18 (m, 3 H,
NH,, Ar-H), 7.35 (s, 4 H, Ar-H), 7.54 (s, 4 H, Ar-H), 7.67
(d, /J=18.5 Hz, 5 H, Ar-H), 7.99 (s, 4 H, Ar-H), 8.67 (s, 1H,
NH, D,0O exchangeable), 9.08 (s, 1H, pyrazole-H5), 10.12
(s, 1H, NH, D,O exchangeable) ppm; *C NMR (75 MHz,
DMSO-dy): 6 67.2, 71.5, 110.5, 115.1, 115.7, 116.3, 119.0,
119.8, 120.6, 122.5, 123.9, 124.9, 127.3, 128.6, 128.9,
129.8, 130.0, 130.3, 138.4, 139.0, 142.8, 152.7, 153.6,
158.4, 160.2, 166.5.ppm; MS (EL, 70 eV): m/z (%) 554 |M*[
Anal. Calcd for C3,H,:NgO,: C, 69.30; H, 4.73; N, 20.20.
Found: C, 69.12; H, 4.57; N, 20.01%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(4-chlorophenyl)acetamide (14b)

Yellow powder (430 mg, 73%); Mp 180-182 °C; IR (KBr):
v 3549 (NH,), 3325 (NH), 1670 (C=0), 1604 (C=N),
1525 (C=C) cm™%; 'H NMR (300 MHz, DMSO-dy):
8 4.79 (s, 2 H, OCH,), 6.59 (d, /=8.8 Hz, 1H, H4), 7.12
(t, J=8.9 Hz, 3 H, NH,, Ar-H), 7.39 (td, J=12.3, 8.3 Hz,
5 H, Ar-H), 7.55 (d, /=7.9 Hz, 2 H, Ar-H), 7.58-7.66
(m, 2 H, Ar-H), 7.69 (d, /=8.8 Hz, 2 H, Ar-H), 7.95 (dd,
J=12.7, 8.6 Hz, 5 H, Ar-H), 9.27 (s, 1H, pyrazole-H5),
9.97 (s, 1H, NH, D,0O exchangeable), 10.28 (s, 1H, NH,
D,O exchangeable) ppm; *C NMR (75 MHz, DMSO-
dg): § 66.9,70.7,108.9, 114.86, 114.93, 115.4, 115.9, 118.3,
118.9, 119.2, 119.9, 121.1, 125.0, 126.6, 129.1, 1294,
129.5, 130.3, 131.1, 133.5, 135.8, 138.6, 143.3, 150.3,
158.1, 166.3 ppm;.MS (EL 70 eV): m/z (%) 589 ]M*[ Anal.
Caled for C;,H,:CIN;O,: C, 65.25; H, 4.28; N, 19.02.
Found: C, 65.05; H, 4.15; N, 18.86%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(p-tolyl)acetamide (14c)

Colorless powder (454 mg, 80%); Mp 193-195 °C;
IR (KBr): v 3549 (NH,), 3325 (NH), 1672 (C=0),
1604 (C=N), 1527 (C=C) cm % '"H NMR (300 MHz,
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DMSO-dy) & 2.26 (s, 3 H, CH;), 4.72 (s, 2 H, OCH,),
6.29 (s, 2 H, NH,, D,0O exchangeable), 6.41 (d, /=7.8 Hz,
1H, H4), 6.79-6.92 (m, 3 H, Ar-H), 7.06-7.20 (m, 5 H,
Ar-H), 7.30-7.35 (m, 1H, Ar-H), 7.46-7.55 (m, 5 H,
Ar-H), 7.64 (d, J=7.2 Hz, 1H, Ar-H), 7.90 (d, J=9.1 Hz,
2 H, Ar-H), 8.70 (s, 1H, NH, D,O exchangeable), 9.15
(s, 1H, pyrazole-H5), 10.02 (s, 1H, NH, D,O exchange-
able) ppm; *C NMR (75 MHz, DMSO-d,): § 20.5, 67.2,
70.7, 108.4, 114.8, 114.9, 115.9, 118.3, 119.0, 119.2, 119.8,
120.8, 125.2, 126.6, 129.1, 129.5, 129.6, 129.7, 130.1,
131.5, 132.7, 135.8, 139.1, 143.3, 150.4, 158.0, 166.1
ppm; MS (EI, 70 eV): m/z (%) 568 ]M*[ Anal. Calcd for
C33HgNgO,: C, 69.70; H, 4.96; N, 19.71. Found: C, 69.59;
H, 4.81; N, 19.58%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo([4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(4-methoxyphenyl)acetamide (14d)

Grey powder (450 mg, 77%); Mp 182-184 °C; IR (KBr):
v 3549 (NH,), 3325 (NH), 1674 (C=0), 1605 (C=N),
1528 (C=C) cm™%; '"H NMR (300 MHz, DMSO-dy) § 3.72
(s, 3 H, OCH;), 4.70 (s, 2 H, OCH,), 6.30 (s, 2 H, NH,,
D,0O exchangeable), 6.41 (d, /=7.3 Hz, 1H, H4), 6.70 (d,
J=7.6 Hz, 1H, Ar-H), 6.88 (t, /J=4.5 Hz, 4 H, Ar-H), 7.04—
711 (m, 2 H, Ar-H), 7.44-7.68 (m, 8 H, Ar-H), 7.89 (d,
J=8.2 Hz, 2 H, Ar-H), 8.70 (s, 1H, NH, D,O exchange-
able), 9.28 (s, 1H, pyrazole-H5), 9.95 (s, 1H, NH, D,O
exchangeable) ppm; MS (EL 70 eV): m/z (%) 584 IM*[
Anal. Calcd for C53H,¢NgO4: C, 67.80; H, 4.83; N, 19.17.
Found: C, 67.61; H, 4.67; N, 18.99%.

Antibacterial assay

The antibacterial activity of the prepared compounds
was assessed by using the agar well diffusion assay. The
antibacterial activity was screened against two gram-pos-
itive bacteria Staphylococcus aureus (ATCC 6538) and
Bacillus subtilis (DSM 1088) as well as two gram-nega-
tive bacteria Pseudomonas aeruginosa (ATCC 10145)
and Escherichia coli (ATCC 8739). Dimethyl sulfoxide
(DMSO) was used to make a solution of 10 mg/mL of
each synthesized compound. The nutrient agar medium
was poured on the plates and let to be cooled to 45 °C.
10°-10° colony forming unit (CFU) per mL from an over-
night bacterial culture was cultured on nutrient agar
plates. Then, 6 mm wells were created in the nutritional
medium using sterile metallic bores. After that, 20 pL of
each tested compound (10 mg/mL) was added to the pre-
pared well. Herein, the negative control was 5% DMSO
and the results were compared to standard Gentamycin
(10 pg/disc) and Clindamycin (2 pg/disc) (positive con-
trols). The inhibition zone diameter in (mm) was mea-
sured using a calliper after the incubation of the plates
at 37 °C for (18-24) hours. The experiment was repeated
twice and in each time was done in triplicates. The
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minimum inhibition concentration (MIC) of compounds
5a, 5¢, 5d, 8 and 12b was determined against S. aureus.
A serial dilution method with concentrations ranging
from 10 to 0.0195 mg/mL was utilized. The MIC is the
lowest concentration of the target drug that can inhibit
the growth of the studied bacteria.
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