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Abstract
A ring annelation reaction was used to successfully prepare benzo[4,5]imidazo[1,2-a][1,3,5]triazines (Systematic 
Name: 1,3,4a,9-tetraza-4H-fluoren-2-amines) tethered to phenoxy-N-arylacetamide, pyrazole, and 2-(4-(1-phenyl-
1H-pyrazol-3-yl)phenoxy)-N-arylacetamide moieties utilizing 1-(1H-benzo[d]imidazol-2-yl)guanidine and the proper 
aldehydes as precursors. 2-(Phenylamino)ethyl fragment of compound 7 was cleaved off and compound 8 was 
formed. The constitutions of the novel compounds were confirmed based on spectral data. The antibacterial 
activity was evaluated for the prepared compounds against two gram-negative and two gram-positive bacteria. 
Among them, compound 12b (inhibition zone 16 ± 0.7 mm) was the most promising against S. aureus compared 
to Gentamycin (15 ± 0 mm). Also, compounds 5a and 5d exerted comparable antibacterial activity (inhibition zones 
13 ± 1.4 and 13 ± 2.1 mm), respectively to Gentamycin against S. aureus. Minimum inhibitory concentration (MIC) 
evaluation against S. aureus showed that compound 12b had the lowest MIC value (78.1 µg/mL).

Keywords Ring annelation, 1-(1H-benzo[d]imidazol-2-yl)guanidine, 1,3,4a,9-tetraza-4H-fluoren-2-amines, phenoxy-N-
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Introduction
Benzimidazoles are the fundamental component of a 
wide range of biochemical and medicinal substances 
with varying chemical and pharmacological properties. 
Numerous derivatives of benzimidazoles have a variety 
of biological characteristics, including antitumor [1–6], 
antifungal [7, 8], antiviral [9–11], antihistaminic [12–14] 
antibacterial [15, 16], and anticonvulsant activity [17, 18]. 
Representative examples of drugs containing benzimid-
azole moiety are depicted in Fig. 1 (compounds I [19–21], 
II [22–24], III [25–27]).

Moreover, triazines are benzene-like six-membered 
planar structures having three nitrogen atoms [28]. The 
triazine scaffold is the most well-known heterocycle, with 
a wide spectrum of biological activity [28–31]. There are 
three triazine isomers, namely, 1,2,4-triazine, 1,2,3-tri-
azine, and 1,3,5-triazine. 1,3,5-Triazine is the most stud-
ied due to its distinct chemical structure and medicinal 
capabilities [30, 31]. For example, 1,3,5-triazine-thiazoli-
dine-dione IV [30] has been reported as a DPP-4 inhibi-
tor with antibacterial activity targeting the S1 pocket for 
the treatment of type 2 diabetes [30] (Fig.  1). Also, tri-
azine dimer V [31] has been reported as an antileishman-
ial agent (Fig. 1) [31].

Besides, it was noted that compounds with acetamide 
linkages as core structures have drawn a lot of interest 
because of their possible therapeutic applications, includ-
ing anticancer [32, 33], haemolytic [34], antioxidant [35], 
antitubercular [36], antiurease [34], antimicrobial [34, 37, 
38], anti-inflammatory [39], anticonvulsant [40], analge-
sic [38, 39], anti-COVID-19 [41], and antituberculosis 
[42].

Moreover, pyrazoles, a five-membered heterocycle with 
two neighboring nitrogen atoms, are the fundamental 
structures found in a variety of compounds with diverse 
biological activities such as anticancer [43, 44], anti-
inflammatory [45, 46], antimicrobial [46, 47], antioxidant 
[48, 49], and anticonvulsant [50] activities. Furthermore, 
bis-heterocycles, which consist of two bioactive hetero-
cycles linked by a flexible linker, have been reported to 
possess plant growth regulative, anticancer, antibacterial, 
and fungicidal properties [51–55]. They can also be used 
as chelating agents, electrical conducting compounds 
[56], and metal ligands [57].

Fluorene is one example of a polyaromatic hydrocar-
bon (PAH), an essential precursor used in manufacturing 
as a component of plastics, insecticides, resins, dyes, and 
medications [58–60]. It was found that replacing one or 
more carbon atoms with heteroatoms results in signifi-
cant alterations of its biological activity [61, 62]. Thus, in 
continuation of our interest in the synthesis of bioactive 
heterocycles [63–87], we aim to prepare hybrid hetero-
cycles based on 1,3,4a,9-tetraza-4H-fluoren-2-amines 
tethered phenoxy-N-arylacetamide, and pyrazole moiety.

Results and discussion
According to the preceding general procedure, the reac-
tion of o-phenylenediamine 1 with cyanoguanidine 2 in 
a refluxing water-HCl mixture produces 1-(1H-benzo[d]
imidazol-2-yl)guanidine 3 (Scheme 1).

The reaction of 1-(1H-benzo[d]imidazol-2-yl)
guanidine 3 with 2-(4-formylphenoxy)-N-arylacet-
amides 4a-d in ethanol in the presence of piperi-
dine as a basic catalyst leads to the formation of 

Fig. 1 Some drugs containing benzimidazole or [1,3,5]triazine cores
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2-(4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)phenoxy)-N-phenylacetamides 5a-d in 
which the benzo[4,5]imidazo[1,2-a][1,3,5]triazine moiety 
is linked to phenoxy-N-arylacetamide moieties (Scheme 
2).

The constitution of the formed products was proved 
based on spectral data. For example, the mass spectrum 
of 5a revealed a molecular ion peak at m/z 412. The IR 
spectrum of compound 5a showed characteristic N-H 
stretching bands at −

ν 3449 and 3325 cm− 1 and a strong 
absorption band at −

ν 1674 cm− 1 for the carbonyl group. 
The 1H NMR spectrum displayed a singlet at δ 4.69 ppm 
for OCH2 protons besides a multiplet at δ 6.68–7.62 
ppm integrated for 14 protons corresponding to the 
aromatic protons and H-4. It also demonstrated three 

singlet signals (exchangeable with D2O) at δ 6.39 (2  H), 
7.98 (1H), and 10.06 (1H) ppm assigned to NH2 and 2 
NH protons. In addition, the 13C NMR showed peaks at 
δ 65.6 and 67.1 ppm for aliphatic carbons OCH2 and C-4 
as well as a characteristic peak at δ 166.4 for the amide 
group. Peaks of the aromatic carbons appear at their 
appropriate position.

Compounds 5 can be seen as 1,3,4a,9-tetraza-4H-fluo-
ren-2-amines, as illustrated in Fig. 2. It has been observed 
that replacing one or more carbon atoms of a carbocyclic 
molecule with heteroatoms results in significant altera-
tions of its biological activity [88–91].

However, the formed dihydrobenzo[4,5]imidazo[1,2-
a][1,3,5]triazine could exist in three tautomeric struc-
tures, namely 3,4-dihydro- 5, 1,4-dihydro- 5(I), and 

Fig. 2 Structures of 9H-fluorene and1,3,4a,9-tetraza-4H-fluoren-2-amines 5

 

Scheme 2 Synthesis of 2-(4-(dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazin-4-yl)phenoxy)-N-arylacetamides 5a-d

 

Scheme 1 Synthesis of 1-(1H-benzo[d]imidazol-2-yl)guanidine 3
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4,10-dihydro- 5(II) tautomeric forms, the 3,4-dihydro- 
isomer is predominant in the crystal form, as indicated in 
related work [92] (Fig. 3).

On the other hand, trials to prepare the benzo[4,5]
imidazo[1,2-a][1,3,5]triazines 7 which are linked to 
benzoyloxyacetamide via the direct reaction of 3 with 
2-oxo-2-(phenylamino)ethyl 4-formylbenzoate deriva-
tives 6a-d under the same condition of absolute ethanol 
at reflux in presence of a catalytic amount of piperidine 
did not succeed. Instead, in all these examples, only ethyl 
4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)benzoate 8 was obtained as the sole product 
(Scheme 3).

Compound 8 was formed due to the transesterification 
of the initially formed 7a-d as indicated in the following 
mechanism. The nucleophilic attack of ethanol to the car-
bonyl ester of 7 leads to the tetrahedral intermediate 9 
that was deprotonated in the presence of a basic catalyst 
(piperidine) into the intermediate 10 that affords the final 
isolable product 8 (Scheme 4).

The chemical constitution of compound 8 was 
undoubtedly confirmed by the aid of spectral tools and 
elemental analysis. The mass spectrum showed a molec-
ular ion peak at m/z 335, consistent with the proposed 
structure. The IR spectrum revealed the presence of a 
characteristic absorption band at −

ν  1713  cm− 1 for the 
ester carbonyl stretch, and broad absorption bands at −

ν  
3418 and 3248 cm− 1 for NH2 and NH group. The 1H NMR 
further confirmed the transesterification as it showed the 
absence of any peaks for OCH2 and amide NH protons. 
Instead, ethoxy protons appeared as a characteristic trip-
let and quartet at δ 1.26 and 4.25 ppm (pJ = 7.2 Hz). NH2 
and NH protons gave peaks at δ 6.42 (2 H) and 8.09 (1H) 
ppm, respectively. Other peaks for aromatic protons and 
H-4 exist in their expected position. 13C NMR spectrum 
showed peaks for carbons of ethoxy group at δ 14.2 and 
61.1 ppm. It revealed also peaks at δ 65.4 ppm for C-4, 
and at δ 165.3 ppm for ester carbonyl. Peaks of other aro-
matic carbons appeared as expected.

To achieve the concept of molecular hybridization, 
we attempt to introduce the biologically active pyrazole 
ring into the structure of 1,3,4a,9-tetraza-4H-fluoren-
2-amines (benzo[4,5]imidazo[1,2-a][1,3,5]triazines). 
For this purpose, 1-phenyl-3-aryl-1H-pyrazole-4-carb-
aldehydes 11a-c were chosen as starting materials and 
were allowed to react with 3 in ethanol at reflux in the 
presence of a few drops of piperazine. Interestingly, 
benzo[4,5]imidazo[1,2-a][1,3,5]triazines 12a-c which are 
linked to a pyrazole moiety at position-4 has been gener-
ated in good yields (Scheme 5).

The chemical composition of the products was veri-
fied by the different spectral tools. For example, the 
mass spectrum of 12b (Ar = 4-MeC6H4) demonstrated a 
molecular ion peak at m/z 419 which fits with the pro-
posed structure. The IR spectrum of compound 12 
showed absorption bands at −

ν  3546 and 3325 cm− 1 for 
NH2 and NH stretching vibration. The 1H NMR indicated 
the presence of a signal at δ 2.24 ppm for methyl protons, 
a doublet at δ 6.57 ppm for H-4, a characteristic signal at 
δ 9.03 ppm for pyrazole-H5, and two singlet signals at δ 
7.04 (2 H), 9.48 (1H) ppm for NH2 and NH, respectively. 
Signals for the aromatic protons appear at their appropri-
ate position. The 13C NMR spectrum showed character-
istic peaks at δ 20.9 and 59.9 ppm for methyl and C-4, 
respectively. Peaks for other carbons appear in their 
expected position.

Stimulated by the previously mentioned results, we 
broadened the scope of this reaction to include the syn-
thesis of 1,3,4a,9-tetraza-4H-fluoren-2-amines 14a-d that 
are linked to 2-(4-(1-phenyl-1H-pyrazol-3-yl)phenoxy)-
N-arylacetamide moieties at position-4 in good yields 
by the direct reaction of the appropriate 2-(4-(4-formyl-
1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-arylacetamides 
13a-d with the corresponding mole equivalent of 3 
(Scheme 6).

The chemical structure of the resulting compounds 
14a-d was confirmed based on spectral analyses. 
For instance, the mass spectrum of 14a indicated a 

Fig. 3 Isomeric structures of [4,5]imidazo[1,2-a][1,3,5]triazines 5
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molecular-ion peak at m/z 554 which is relative to the 
proposed structure. The IR spectrum showed character-
istic absorption bands at −

ν  3549, 3325, 1674  cm− 1 for 
NH2, NH, and amide C = O, respectively. The 1H NMR 

spectrum displayed two characteristic singlets at δ 4.79 
and 9.08 ppm for OCH2 and pyrazole-H5, respectively. It 
showed further multiplets at δ 6.93–7.99 ppm integrated 
for 21 protons for the amino group, H-4, and aromatic 

Scheme 4 Unexpected formation of ethyl 4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazin-4-yl)benzoate 8

 

Scheme 3 Synthesis of ethyl 4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazin-4-yl)benzoate 8
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protons, as well as two D2O-exchangeable singlets at 
δ 8.67 and 10.12 ppm for the two NH groups. The 13C 
NMR spectrum shows peaks at δ 67.1 and 166.5 ppm for 
OCH2 and amide C = O. Other peaks are present in close 
agreement with the proposed structure.

Antibacterial activity
Agar well diffusion assay was used to assess the anti-
bacterial activity of all the prepared compounds against 
Staphylococcus aureus (S. aureus) and Bacillus subtilis 
(B. subtilis) (gram-positive bacteria), Escherichia coli (E. 
coli) and Pseudomonas aeruginosa (P. aeruginosa) (gram-
negative bacteria). The results showed that compounds 
5a, 5d, and 12b were promising against S. aureus with 
the inhibition zones of 13 ± 1.4, 13 ± 2.1, and 16 ± 0.7 mm, 
respectively, and the most effective one was compound 
12b compared to Gentamycin (15 ± 0  mm) (Table  1). 
Concerning B. subtilis, compounds 5a, 5d, 12a, and 
12b showed moderate activity with the inhibition zones 
of 14 ± 0, 16 ± 0.7, 14 ± 0, and 14 ± 1.4  mm, respectively, 
compared to Gentamycin (20 ± 1.4). Compound 5d had 
the strongest action against P. aeruginosa (16 ± 0.7 mm), 
compared to Gentamycin (21 ± 0  mm). Compounds 5a, 
5c, and 12b had moderate activity, whereas compound 
14d had the lowest activity (10 ± 0 mm) against P. aeru-
ginosa compared to Gentamycin. All the synthesized 

Table 1 Antibacterial activity of the synthesized compounds 
at a concentration of 10 mg/mL. The data was mean ± standard 
deviation (SD) of two separate experiments performed in 
triplicats
Inhibition zone diameter (mm) ± SD at 10 mg/mL
Sample S. aureus B. subtilis E. coli P. aeruginosa
5a 13 ± 1.4 14 ± 0 NA 14 ± 0
5b NA NA NA NA
5c 12 ± 0 NA NA 13 ± 1.4
5d 13 ± 2.1 16 ± 0.7 NA 16 ± 0.7
8 10 ± 0 NA NA NA
12a NA 14 ± 0 NA NA
12b 16 ± 0.7 14 ± 1.4 NA 14 ± 1.4
12c NA NA NA NA
14a NA NA NA NA
14b NA NA NA NA
14c NA NA NA NA
14d NA NA NA 10 ± 0
Gentamycin 15 ± 0 20 ± 1.4 20 ± 2.1 21 ± 0
5% DMSO 0.0 0.0 0.0 0.0
(Gentamycin, 10  µg/disc) was positive control for gram-positive and gram-
negative bacteria. *NA: No activity

Scheme 6 Synthesis of 1,3,4a,9-tetraza-4H-fluoren-2-amines 14a-d that are linked to 2-(4-(1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-arylacetamide moieties

 

Scheme 5 Synthesis of pyrazole-containing 1,3,4a,9-tetraza-4H-fluoren-2-amines 12a-c
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compounds had no action against E. coli. So, the most 
promising results were shown against S. aureus com-
pared to Gentamycin. Therefore, S.aureus strain was 
chosen for further MIC evaluation. Tables 2 and 3; Fig. 4 
showed the results of MIC determination. It was found 
that compound 12b had the lowest MIC value (78.1 µg/
mL).

Structure-activity relationship
Figure  5 shows a design for the prepared series of 
benzo[4,5]imidazo[1,2-a][1,3,5]triazines 5,12, and 14.

The structure-activity relationship demonstrated that 
the derivatives 5a-d and 12a-c performed better than 
the derivatives 14a-d. Compound 5d, which included a 
4-methoxyphenyl group (an electron-donating group), 
had the highest antibacterial activity against S. aureus,P. 
aeuroginosa, and B. subtilis among the 5a-d derivatives. 
Compound 5a, which included an unsubstituted phe-
nyl group, had a moderate action against S. aureus,P. 
aeruginosa and B. subtilis. The p-tolyl group (electron-
donating group) in derivative 5c demonstrated modest 
antibacterial activity against S. aureus and P. aeruginosa. 
On the other hand, derivative 5b with 4-chlorophenyl 
moiety (electron-withdrawing group) reduced antibac-
terial efficacy against the tested bacterial strains. The 
unsubstituted phenyl group in 12a demonstrated mod-
erate activity against B. subtilis, whereas derivative 12b 
with p-tolyl group exhibited promising action against 

S. aureus and moderate activity against B. subtilis and 
P. aeruginosa, respectively. Compound 12c, on the 
other hand, had decreased activity against all the strains 
tested. Among compounds 14a-d, only 14d containing a 
4-methoxyphenyl group was effective. It showed limited 
efficacy against P. aeruginosa.

Conclusion
We have described an effective method for creating 
novel annelated 1,3,4a,9-tetraza-4H-fluoren-2-amines 
ring systems incorporating phenoxy-N-arylacetamide, 
and pyrazole moieties. The reaction involves reacting 
one-mole equivalent of 1-(1H-benzo[d]imidazol-2-yl)
guanidine with one-mole equivalent of the appropriate 
aldehydes. We concluded that compound 5d’s promising 
action against S. aureus and P. aeruginosa, as well as its 
modest activity against B. subtilis, might be attributed to 
its inhibition of the MurG enzyme, as indicated by our 
molecular docking studies. Furthermore, the promising 
efficacy of compounds 5a and 5c against S. aureus might 
be attributed to their inhibitory action on bacterial tyro-
syl tRNA synthetase and MurG.

Supplementary file Compounds 5a is represented here 
as a representative example. Full experimental details of 
all compounds and spectral data are represented in the 
supplementary file.

“Experimental
“Melting points were measured with using a Stuart melt-
ing point apparatus and were uncorrected. The IR spectra 
were recorded using Vector 22 FTIR-spectrophotom-
eter (Brucker, Germany) as KBr pellets. The 1H and 13C 
NMR spectra were recorded in DMSO-d6 as a solvent 
with Mercury VXR-300 NMR spectrometer (Varian, 
USA) operating at 300 MHz and 75 MHz, using TMS as 
an internal standard. Chemical shifts were reported as δ 
values in ppm. Mass spectra were recorded with GCMS-
QP-1000 EX mass spectrometer (Shimadzu, Japan) in EI 
(70  eV) model. The elemental analyses were performed 
using CHNS-932 Vario elemental analyzer (LECO, USA) 
at the Micro Analytical Centre, Cairo University”.

General method for the synthesis of compounds 5a-d, 8, 
12a-c and 14a-d
“A solution of 1-(1H-benzo[d]imidazol-2-yl)guanidine (3) 
(175  mg, 1 mmol) and the appropriate aldehyde (4a-d), 
(6a-d), (11a-c), or (13a-d) (1 mmol) in ethanol (10 mL) 
containing piperidine (2 drops) was heated at reflux for 
3 h. The reaction mixture is allowed to cool to ambient 
temperature. A precipitate is formed which is subse-
quently filtered, washed with ethanol, and recrystallized 
from EtOH\dioxane (3:1, v/v) mixture to give the titled 
compound”.

Table 2 The effect of different concentrations (10-0.0195 mg/
mL) of 5a, 5c, 5d, 8, and 12b on S. Aureus. The data was the 
mean of duplicate results ± standard deviation (SD)
Concentra-
tion (mg/mL)

S. aureus (Inhibition zone (mm) ± SD)
5a 5c 5d 8 12b

10 14 ± 1.4 12 ± 0 12.5 ± 2.1 10 ± 0 15.5 ± 0.7
5 13 ± 0.7 11 ± 0 10 ± 0.7 10 ± 0 14 ± 0
2.5 12 ± 0 11 ± 0 10 ± 0 9 ± 0.7 13 ± 1
1.25 11 ± 0 10 ± 0.7 9 ± 0 9 ± 0.7 13 ± 0
0.625 0 9 ± 0 0 0 12 ± 1
0.3125 0 0 0 0 12 ± 0.8
0.1563 0 0 0 0 11.5 ± 0
0.0781 0 0 0 0 11 ± 0
0.0391 0 0 0 0 0
0.0195 0 0 0 0 0

Table 3 Minimum inhibitory concentration (MIC) of compounds 
5a, 5c, 5d, 8, and 12b against S. Aureus
Compound S. aureus

MIC (µg/mL)
5a 1250
5c 625
5d 1250
8 1250
12b 78.1
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2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-phenylacetamide (5a)
Colorless powder (350  mg, 85%); Mp 235–237 ºC; 
IR (KBr): −

ν  3449 (NH2), 3325 (2NH), 1674 (C = O), 
1605 (C = N), 1520 (C = C) cm− 1; 1H NMR (300  MHz, 
DMSO-d6) δ 4.69 (s, 2  H, OCH2), 6.39 (s, 2  H, NH2, 
D2O exchangeable), 6.70 (d, J = 6.9  Hz, 2  H, Ar-H), 6.78 
(t, J = 7.5  Hz, 1H, Ar-H), 6.93 (t, J = 7.5  Hz, 1H, Ar-H), 
7.02 (d, J = 8.6  Hz, 2  H, Ar-H), 7.08 (d, J = 8.4  Hz, 1H, 
H4), 7.22 (d, J = 8.0  Hz, 1H, Ar-H), 7.26–7.36 (m, 4  H, 
Ar-H), 7.61 (d, J = 8.6 Hz, 2 H), 7.98 (br s, 1H, NH, D2O 
exchangeable), 10.06 (s, 1H, NH, D2O exchangeable) 
ppm; 13C NMR (75 MHz, DMSO-d6): δ 65.6, 67.1, 108.4, 
115.0, 115.9, 119.0, 119.8, 120.9, 123.7, 127.8, 128.8, 
131.2, 133.2, 138.4, 143.1, 153.5, 155.4, 158.4, 166.4 
ppm; MS (EI, 70 eV): m/z (%) 412 ]M+[; Anal. Calcd for 
C23H20N6O2: C, 66.98; H, 4.89; N, 20.38. Found: C, 66.83; 
H, 4.70; N, 20.18%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-(4-chlorophenyl)acetamide (5b)
Pale yellow powder (370  mg, 83%); Mp 200–202 ºC; 
IR (KBr): −

ν  3448 (NH2), 3320 (2NH), 1670 (C = O), 
1600 (C = N), 1519 (C = C) cm− 1; 1H NMR (300  MHz, 

DMSO-d6) δ 4.69 (s, 2 H, OCH2), 6.34 (s, 2 H, NH2, D2O 
exchangeable), 6.69 (d, J = 7.2  Hz, 2  H, Ar-H), 6.76 (t, 
J = 7.2 Hz, 1H, Ar-H), 6.91 (t, J = 7.5 Hz, 1H, Ar-H), 7.01 
(d, J = 8.7  Hz, 2  H, Ar-H), 7.22 (d, J = 7.7  Hz, 1H, H4), 
7.32 (d, J = 8.8  Hz, 2  H, Ar-H), 7.36 (d, J = 8.9  Hz, 2  H, 
Ar-H), 7.65 (d, J = 8.9  Hz, 2  H, Ar-H), 7.92 (s, 1H, NH, 
D2O exchangeable), 10.20 (s, 1H, NH) ppm; 13C NMR 
(75  MHz, DMSO-d6) δ 65.9, 67.3, 108.3, 114.6, 116.0, 
118.6, 120.1, 120.7, 121.1, 128.1, 129.7, 131.7, 132.6, 
133.4, 135.2, 143.4, 154.9, 158.8, 166.6 ppm; MS (EI, 
70 eV): m/z (%) 446 ]M+[ Anal. Calcd for C23H19ClN6O2: 
C, 61.82; H, 4.29; N, 18.81. Found: C, 61.66; H, 4.11; N, 
18.64%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-(p-tolyl)acetamide (5c)
Colorless powder (354  mg, 83%); Mp 204–206 ºC; IR 
(KBr): −

ν  3448 (NH2), 3328 (2NH), 1677 (C = O), 1609 
(C = N), 1520 (C = C) cm− 1; 1H NMR (300 MHz, DMSO-
d6) δ 2.25 (s, 3 H, CH3), 4.66 (s, 2 H, OCH2), 6.38 (s, 2 H, 
NH2, D2O exchangeable), 6.69 (d, J = 6.6 Hz, 2 H, Ar-H), 
6.76 (t, J = 7.3  Hz, 1H, Ar-H), 6.92 (t, J = 7.1  Hz, 1H, 
Ar-H), 7.01 (d, J = 8.1 Hz, 2 H, Ar-H), 7.11 (d, J = 7.6 Hz, 
2 H, Ar-H), 7.21 (d, J = 7.6 Hz, 1H, H4), 7.33 (d, J = 8.2 Hz, 

Fig. 4 Agar well diffusion assay for estimating the MIC of compounds 5a, 5c, 5d, 8 and 12b against S. aureus. The range of serial dilution concentrations 
was 1 = 10 mg/mL to 10 = 0.0195 mg/mL. CN10 means Gentamycin positive control
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2 H), 7.49 (d, J = 7.8 Hz, 2 H, Ar-H), 7.96 (br s, 1H, NH, 
D2O exchangeable), 9.96 (s, 1H, NH, D2O exchange-
able) ppm; 13C NMR (75 MHz, DMSO-d6): δ 20.5, 65.5, 
67.1, 108.3, 115.0, 115.9, 118.9, 119.9, 120.5, 120.8, 127.7, 
129.1, 131.3, 132.7, 133.2, 135.9, 143.4, 155.4, 158.4, 166.1 
ppm; MS (EI, 70 eV): m/z (%) 426 ]M+[ Anal. Calcd for 
C24H22N6O2: C, 67.59; H, 5.20; N, 19.71. Found: C, 67.39; 
H, 5.02; N, 19.53%.

2-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-4-yl)phenoxy)-N-(4-methoxyphenyl)acetamide (5d)
Grey powder (380 mg, 86%); Mp 240–242 ºC; IR (KBr): 
−
ν  3448 (NH2), 3330 (2NH), 1678 (C = O), 1608 (C = N), 
1522 (C = C) cm− 1; 1H NMR (300 MHz, DMSO-d6) δ 3.72 
(s, 3  H, OCH3), 4.65 (s, 2  H, OCH2), 6.37 (s, 2  H, NH2, 
D2O exchangeable), 6.69 (d, J = 6.2  Hz, 2  H, Ar-H), 6.77 
(t, J = 7.5  Hz, 1H, Ar-H), 6.88 (d, J = 8.2  Hz, 2  H, Ar-H), 
6.93 (d, J = 7.5  Hz, 1H, Ar-H), 7.02 (d, J = 7.9  Hz, 2  H, 
Ar-H), 7.21 (d, J = 7.7  Hz, 1H, H4), 7.33 (d, J = 8.1  Hz, 

2  H, Ar-H), 7.51 (d, J = 8.7  Hz, 2  H, Ar-H), 7.95 (s, 1H, 
NH, D2O exchangeable), 9.91 (s, 1H, NH, D2O exchange-
able) ppm; 13C NMR (75  MHz, DMSO-d6) δ 58.1, 65.5, 
69.1, 108.3, 115.0, 115.5, 116.0, 119.8, 120.1, 120.8, 129.1, 
131.7, 132.3, 133.4, 135.9, 144.3, 154.5, 158.4, 160.3, 167.4 
ppm; MS (EI, 70 eV): m/z (%) 442 ]M+[ Anal. Calcd for 
C24H22N6O3: C, 65.15; H, 5.01; N, 18.99. Found: C, 64.97; 
H, 4.87; N, 18.82%.

Ethyl 4-(2-amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)benzoate (8)
Wite powder (295  mg, 88%); Mp 208–210 ºC; IR (KBr): 
h −

ν  3418 (NH2), 3248 (NH), 1713 (C = O), 1628 (C = N), 
1528 (C = C) cm− 1; 1H NMR (300 MHz, DMSO-d6) δ 1.28 
(t, J = 7.2 Hz, 3 H, COOCH2CH3), 4.29 (q, J = 7.2 Hz, 2 H, 
COOCH2CH3), 6.42 (s, 2  H, NH2, D2O exchangeable), 
6.74 (d, J = 7.5 Hz, 1H, H4), 6.79 (t, J = 7.4 Hz, 1H, Ar-H), 
6.84 (s, 1H, H4), 6.94 (t, J = 7.4  Hz, 1H, Ar-H), 7.24 (d, 
J = 7.8 Hz, 1H, Ar-H), 7.48 (d, J = 7.9 Hz, 2 H, Ar-H), 7.96 

Fig. 5 A general structure of the prepared benzo[4,5]imidazo[1,2-a][1,3,5]triazines 5,12, and 14
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(d, J = 7.7 Hz, 2 H, Ar-H), 8.09 (s, 1H, NH, D2O exchange-
able) ppm; 13C NMR (75 MHz, DMSO-d6): δ 14.2, 61.1, 
65.4, 108.5, 116.1, 119.3, 121.4, 126.6, 128.7, 130.0, 130.7, 
131.1, 143.2, 145.3, 155.2, 165.3 ppm; MS (EI, 70 eV): m/z 
(%) 335 ]M+[. Anal. Calcd for C18H17N5O2: C, 64.47; H, 
5.11; N, 20.88. Found: C, 64.33; H, 4.95; N, 20.70%.

4-(1,3-Diphenyl-1H-pyrazol-4-yl)-3,4-dihydrobenzo[4,5]
imidazo[1,2-a][1,3,5]triazin-2-amine (12a)
Colorless powder (352  mg, 87%); Mp 280–282 ºC; IR 
(KBr): −

ν  3540 (NH2), 3325 (NH), 1604 (C = N), 1520 
(C = C) cm− 1; 1H NMR (300 MHz, DMSO-d6) δ 6.40 (d, 
J = 7.9  Hz, 1H, H4), 6.51(s, 2  H, NH2, D2O exchange-
able), 6.69 (t, J = 7.6  Hz, 1H, Ar-H), 6.88 (d, J = 7.2  Hz, 
2  H, Ar-H), 7.15 (d, J = 7.8  Hz, 1H, Ar-H), 7.33 (t, 
J = 7.4 Hz, 1H, Ar-H), 7.41 (d, J = 6.6 Hz, 2 H, Ar-H), 7.50 
(t, J = 7.7 Hz, 3 H, Ar-H), 7.65 (d, J = 7.6 Hz, 2 H, Ar-H), 
7.90 (d, J = 8.0 Hz, 2 H, Ar-H), 8.25 (br s, 1H, NH, D2O 
exchangeable), 8.76 (s, 1H, pyrazole-H5) ppm; 13C NMR 
(75  MHz, DMSO-d6): δ 62.6, 111.2, 118.1, 118.5, 119.2, 
122.9, 123.8, 127.0, 128.0, 128.2, 128.9, 129.2, 129.4, 
129.6, 130.2, 137.6, 139.5, 150.5, 151.4, 157.7 ppm; MS 
(EI, 70 eV): m/z (%) 405 ]M+[ Anal. Calcd for C24H19N7: 
C, 71.09; H, 4.72; N, 24.18. Found: C, 70.96; H, 4.56; N, 
24.04%.

4-(1-Phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-3,4-
dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazin-2-amine 
(12b)
Wite powder (369  mg, 88%); Mp 295–297 ºC; IR (KBr): 
h −

ν  3546 (NH2), 3325 (NH), 1604 (C = N), 1525 (C = C) 
cm− 1; 1H NMR (300  MHz, DMSO-d6) δ 2.34 (s, 3  H, 
CH3), 6.58 (d, J = 7.9 Hz, 1H, H4), 7.04 (s, 2 H, NH2, D2O 
exchangeable), 7.17 (d, J = 7.8  Hz, 1H, Ar-H), 7.23 (d, 
J = 7.6 Hz, 2 H, Ar-H), 7.33 (d, J = 7.9 Hz, 3 H, Ar-H), 7.43 
(d, J = 8.0 Hz, 2 H, Ar-H), 7.52 (t, J = 7.7 Hz, 3 H, Ar-H), 
7.89 (d, J = 8.2 Hz, 2 H, Ar-H), 9.03 (s, 1H, pyrazole-H5), 
9.48 (br s, 1H, NH, D2O exchangeable) ppm; 13C NMR 
(75  MHz, DMSO-d6): δ 20.9, 59.9, 110.2, 111.7, 118.5, 
119.2, 122.9, 123.8, 127.0, 128.0, 128.2, 128.9, 129.2, 
129.4, 129.7, 130.1, 138.2, 139.0, 150.8, 151.2, 156.7 
ppm; MS (EI, 70 eV): m/z (%) 419 ]M+[ Anal. Calcd for 
C25H21N7: C, 71.58; H, 5.05; N, 23.37. Found: C, 71.43; H, 
4.95; N, 23.18%.

4-(3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-3,4-
dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazin-2-amine 
(12c)
Colorless powder (374  mg, 86%); Mp 287–289 ºC; IR 
(KBr): −

ν  3549 (NH2), 3325 (NH), 1674 (C = O), 1605 
(C = N), 1528 (C = C) cm− 1; 1H NMR (300 MHz, DMSO-
d6) δ 3.78 (s, 3 H, OCH3), 6.50 (d, J = 7.6 Hz, 1H, H4), 6.92 
(s, 2 H, NH2, D2O exchangeable), 6.97 (d, J = 8.3 Hz, 2 H, 
Ar-H), 7.07 (d, J = 7.5 Hz, 1H, Ar-H), 7.13 (s, 2 H, Ar-H), 

7.27 (d, J = 7.8  Hz, 1H, Ar-H), 7.35 (d, J = 8.1  Hz, 1H, 
Ar-H), 7.50 (d, J = 6.1 Hz, 4 H, Ar-H), 7.88 (d, J = 8.1 Hz, 
2 H, Ar-H), 8.37 (s, 1H, NH, D2O exchangeable), 8.87 (s, 
1H, pyrazole-H5) ppm; 13C NMR (75 MHz, DMSO-d6): δ 
55.4, 61.8, 110.5, 111.9, 118.4, 119.2, 122.9, 123.8, 127.2, 
128.16, 128.18, 128.9, 129.3, 129.4, 129.7, 138.0, 138.6, 
150.6, 151.2, 156.7, 159.4 ppm; MS (EI, 70 eV): m/z (%) 
435 ]M+[ Anal. Calcd for C25H21N7O: C, 68.95; H, 4.86; 
N, 22.51. Found: C, 68.79; H, 4.69; N, 22.39%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
phenylacetamide (14a)
White powder (415 mg, 75%); Mp 240–242 ºC; IR (KBr): 
−
ν  3549 (NH2), 3325 (NH), 1674 (C = O), 1605 (C = N), 
1528 (C = C) cm− 1; 1H NMR (300  MHz, DMSO-d6): δ 
4.79 (s, 2 H, OCH2), 6.92 (s, 1H, H4), 7.09–7.18 (m, 3 H, 
NH2, Ar-H), 7.35 (s, 4 H, Ar-H), 7.54 (s, 4 H, Ar-H), 7.67 
(d, J = 18.5 Hz, 5 H, Ar-H), 7.99 (s, 4 H, Ar-H), 8.67 (s, 1H, 
NH, D2O exchangeable), 9.08 (s, 1H, pyrazole-H5), 10.12 
(s, 1H, NH, D2O exchangeable) ppm; 13C NMR (75 MHz, 
DMSO-d6): δ 67.2, 71.5, 110.5, 115.1, 115.7, 116.3, 119.0, 
119.8, 120.6, 122.5, 123.9, 124.9, 127.3, 128.6, 128.9, 
129.8, 130.0, 130.3, 138.4, 139.0, 142.8, 152.7, 153.6, 
158.4, 160.2, 166.5.ppm; MS (EI, 70 eV): m/z (%) 554 ]M+[ 
Anal. Calcd for C32H26N8O2: C, 69.30; H, 4.73; N, 20.20. 
Found: C, 69.12; H, 4.57; N, 20.01%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(4-chlorophenyl)acetamide (14b)
Yellow powder (430 mg, 73%); Mp 180–182 ºC; IR (KBr): 
−
ν  3549 (NH2), 3325 (NH), 1670 (C = O), 1604 (C = N), 
1525 (C = C) cm− 1; 1H NMR (300  MHz, DMSO-d6): 
δ 4.79 (s, 2  H, OCH2), 6.59 (d, J = 8.8  Hz, 1H, H4), 7.12 
(t, J = 8.9 Hz, 3 H, NH2, Ar-H), 7.39 (td, J = 12.3, 8.3 Hz, 
5  H, Ar-H), 7.55 (d, J = 7.9  Hz, 2  H, Ar-H), 7.58–7.66 
(m, 2 H, Ar-H), 7.69 (d, J = 8.8 Hz, 2 H, Ar-H), 7.95 (dd, 
J = 12.7, 8.6  Hz, 5  H, Ar-H), 9.27 (s, 1H, pyrazole-H5), 
9.97 (s, 1H, NH, D2O exchangeable), 10.28 (s, 1H, NH, 
D2O exchangeable) ppm; 13C NMR (75  MHz, DMSO-
d6): δ 66.9, 70.7, 108.9, 114.86, 114.93, 115.4, 115.9, 118.3, 
118.9, 119.2, 119.9, 121.1, 125.0, 126.6, 129.1, 129.4, 
129.5, 130.3, 131.1, 133.5, 135.8, 138.6, 143.3, 150.3, 
158.1, 166.3 ppm;.MS (EI, 70 eV): m/z (%) 589 ]M+[ Anal. 
Calcd for C32H25ClN8O2: C, 65.25; H, 4.28; N, 19.02. 
Found: C, 65.05; H, 4.15; N, 18.86%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(p-tolyl)acetamide (14c)
Colorless powder (454  mg, 80%); Mp 193–195 ºC; 
IR (KBr): −

ν  3549 (NH2), 3325 (NH), 1672 (C = O), 
1604 (C = N), 1527 (C = C) cm− 1; 1H NMR (300  MHz, 
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DMSO-d6) δ 2.26 (s, 3  H, CH3), 4.72 (s, 2  H, OCH2), 
6.29 (s, 2 H, NH2, D2O exchangeable), 6.41 (d, J = 7.8 Hz, 
1H, H4), 6.79–6.92 (m, 3  H, Ar-H), 7.06–7.20 (m, 5  H, 
Ar-H), 7.30–7.35 (m, 1H, Ar-H), 7.46–7.55 (m, 5  H, 
Ar-H), 7.64 (d, J = 7.2  Hz, 1H, Ar-H), 7.90 (d, J = 9.1  Hz, 
2  H, Ar-H), 8.70 (s, 1H, NH, D2O exchangeable), 9.15 
(s, 1H, pyrazole-H5), 10.02 (s, 1H, NH, D2O exchange-
able) ppm; 13C NMR (75 MHz, DMSO-d6): δ 20.5, 67.2, 
70.7, 108.4, 114.8, 114.9, 115.9, 118.3, 119.0, 119.2, 119.8, 
120.8, 125.2, 126.6, 129.1, 129.5, 129.6, 129.7, 130.1, 
131.5, 132.7, 135.8, 139.1, 143.3, 150.4, 158.0, 166.1 
ppm; MS (EI, 70 eV): m/z (%) 568 ]M+[ Anal. Calcd for 
C33H28N8O2: C, 69.70; H, 4.96; N, 19.71. Found: C, 69.59; 
H, 4.81; N, 19.58%.

2-(4-(4-(2-Amino-3,4-dihydrobenzo[4,5]imidazo[1,2-a]
[1,3,5]triazin-4-yl)-1-phenyl-1H-pyrazol-3-yl)phenoxy)-N-
(4-methoxyphenyl)acetamide (14d)
Grey powder (450 mg, 77%); Mp 182–184 ºC; IR (KBr): 
−
ν  3549 (NH2), 3325 (NH), 1674 (C = O), 1605 (C = N), 
1528 (C = C) cm− 1; 1H NMR (300 MHz, DMSO-d6) δ 3.72 
(s, 3  H, OCH3), 4.70 (s, 2  H, OCH2), 6.30 (s, 2  H, NH2, 
D2O exchangeable), 6.41 (d, J = 7.3 Hz, 1H, H4), 6.70 (d, 
J = 7.6 Hz, 1H, Ar-H), 6.88 (t, J = 4.5 Hz, 4 H, Ar-H), 7.04–
7.11 (m, 2  H, Ar-H), 7.44–7.68 (m, 8  H, Ar-H), 7.89 (d, 
J = 8.2  Hz, 2  H, Ar-H), 8.70 (s, 1H, NH, D2O exchange-
able), 9.28 (s, 1H, pyrazole-H5), 9.95 (s, 1H, NH, D2O 
exchangeable) ppm; MS (EI, 70  eV): m/z (%) 584 ]M+[ 
Anal. Calcd for C33H28N8O3: C, 67.80; H, 4.83; N, 19.17. 
Found: C, 67.61; H, 4.67; N, 18.99%.

Antibacterial assay
The antibacterial activity of the prepared compounds 
was assessed by using the agar well diffusion assay. The 
antibacterial activity was screened against two gram-pos-
itive bacteria Staphylococcus aureus (ATCC 6538) and 
Bacillus subtilis (DSM 1088) as well as two gram-nega-
tive bacteria Pseudomonas aeruginosa (ATCC 10145) 
and Escherichia coli (ATCC 8739). Dimethyl sulfoxide 
(DMSO) was used to make a solution of 10  mg/mL of 
each synthesized compound. The nutrient agar medium 
was poured on the plates and let to be cooled to 45  °C. 
105-106 colony forming unit (CFU) per mL from an over-
night bacterial culture was cultured on nutrient agar 
plates. Then, 6 mm wells were created in the nutritional 
medium using sterile metallic bores. After that, 20 µL of 
each tested compound (10 mg/mL) was added to the pre-
pared well. Herein, the negative control was 5% DMSO 
and the results were compared to standard Gentamycin 
(10  µg/disc) and Clindamycin (2  µg/disc) (positive con-
trols). The inhibition zone diameter in (mm) was mea-
sured using a calliper after the incubation of the plates 
at 37 °C for (18–24) hours. The experiment was repeated 
twice and in each time was done in triplicates. The 

minimum inhibition concentration (MIC) of compounds 
5a, 5c, 5d, 8 and 12b was determined against S. aureus. 
A serial dilution method with concentrations ranging 
from 10 to 0.0195  mg/mL was utilized. The MIC is the 
lowest concentration of the target drug that can inhibit 
the growth of the studied bacteria.
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