RESEARCH

Label-free upconversion nanosensor for water safety monitoring of permanganate and dichromate ions

Kuncheng Xu¹, Hongli Wen^{1,2*}, Wei Song³, Abdur Raheem Aleem¹, Murugavelu Marimuthu^{1*}, Wang Chen⁴, Qiuqiang Zhan⁴, Deshmukh Abdul Hakeem^{5*} and Saleh T. Mahmoud⁵

Abstract

Water contaminated with heavy metal ions poses serious threat to the human health and environment protection. It is imperative to develop analytical tools to detect heavy metal ions. Herein, we propose autofluorescence free SiO₂ modified upconversion nanosensor for label-free and fast determination of MnO_4^- and $Cr_2O_7^{2-}$ anions. The highly efficient and multi-colour upconversion luminescence (UCL) of UCNPs@SiO₂ was effectively quenched by MnO_4^- and $Cr_2O_7^{2-}$ anions with fast response time of 2 and 1 min, respectively. The UCNPs@SiO₂ nanosensor exhibits linear detection ranges of 0.6–2000, 2–2000 μ M with the LOD at 0.15, 0.04 μ M for MnO_4^- and $Cr_2O_7^{2-}$ anions, respectively. The nanosensor demonstrates autofluorescence free and fast determination of MnO_4^- and $Cr_2O_7^{2-}$ anions with satisfactory results. The UCNPs@SiO₂ UCL nanosensor demonstrates autofluorescence free and fast determination of MnO_4^- and $Cr_2O_7^{2-}$ anions with high sensitivity, good specificity, low LOD, and wide linear detection range, holding great potential for food and environmental sample sensing.

Keywords Upconversion nanoparticles, MnO_4^{-} , $Cr_2O_7^{2-}$, Förster resonance energy transfer, Inner filter effect

*Correspondence: Hongli Wen hongliwen@gdut.edu.cn Murugavelu Marimuthu mveluvishal@gmail.com Deshmukh Abdul Hakeem abdulhakeem.desh@uaeu.ac.ae ¹Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology

Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

²Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China

³Analysis and Test Center, Guangdong University of Technology,

Guangzhou 510006, China

⁴Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China

⁵Department of Physics, United Arab Emirates University, Al-Ain, Abu Dhabi 15551, UAE

Introduction

In current fast paced industrialization, it is of paramount importance to detect hazardous chemicals including heavy metal cations and anions discharged from industrial effluents because of their serious threat to human health and environment protection [1]. Industrial wastewater that contains numerous heavy metal ions contamination could pose significant challenge to the aquatic plants, animals as well as to humans due to their potential adverse effects. Among the hazardous chemicals, permanganate ion (MnO₄⁻) is believed to be a potential carcinogenic chemical, which is frequently used as bleaching, disinfectant and redox reagents both in laboratory and industry [2, 3]. It is well-known that KMnO₄ is widely used in Hummers Method for converting graphene oxide into graphene, which produces hazardous chemical species such as Mn²⁺, MnO₄⁻ and Mn₂O₇

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

[4]. KMnO₄ is also used for water treatment to remove reductive, odorous, phenolic substances [5]. The trace amount of MnO_4^- can not only lead to the neurological disorder in human but also could impart disability [6]. World Health Organization (WHO) prescribed an upper consumption limit for total manganese in drinking water i.e., 0.1 mg L⁻¹ [4]. An excess of MnO_4^- is harmful and can lead to kidney and liver damage [7].

Besides MnO_4^- , the dichromate ion $(Cr_2O_7^{2-})$ is another type of extremely hazardous material because of the toxic, carcinogenic and mutagenic nature [8]. The high-valent chromium species $Cr_2O_7^{2-}$ anions are widely utilized as chemical intermediates [9]. The $Cr_2O_7^{2-}$ presence in the industrial wastewater dominates since the chromium-based materials are widely used both in industry and home as a decorative and protective paint to prevent automobile and home/offices furniture from wear and tear thereby improving the shelf life of the components used in daily life [10]. A rather serious problem arises when the $Cr_2O_7^{2-}$ anions are freely discharged into the water sources without any processing after being used in mineral processing, printing, plating, and tanning. According to the WHO, the total amount of Cr concentration in consumable water should not exceed above 0.05 mg L^{-1} [10]. Excess intake of this anion can cause haemorrhaging, asthma, kidney diseases, neurological disorders and cancer [11, 12].

The efficient detection and decontamination of MnO₄and Cr₂O₇²⁻ from water environments is thus highly desired yet challenging due to the coexistence of other heavy metals with them. The complex water environment containing different metal ions alongside MnO4- and $Cr_2O_7^{2-}$ makes the detection and removal complicated because of the competition between luminescence and adsorption sites of the ions. It is difficult to fabricate reliable sensing platform to determinate MnO_4^{-} and $Cr_2O_7^{2-}$ from such a complex environment considering significant high signal to noise ratio caused by other heavy metal ions [8]. Therefore, exploring effective ways to detect inorganic ions has attracted much attention. Thus, it is essential to quantify the traces of MnO₄⁻ and Cr₂O₇²⁻ onsite from drinking water, environment as well as from manufacturing industry, and ecological system. In this regard, developing novel probes with high sensitivity and selectivity to detect metal ions is of prime importance for human health. So far, a variety of analytical techniques have been employed to detect ions, like inductively coupled plasma mass spectrometry (ICP-MS) [13], atomic absorption spectroscopy (AAS) [14], liquid chromatography-tandem mass spectrometry [15], ion exchange [16], adsorption [17], and membrane separation [18]. However, these approaches are still limited, needing specialized and bulkier instruments, moreover, they are difficult to operate, expensive, and time-consuming [19].

Over the past decade, fluorescent studies have gained significant attention owing to superior sensitivity and selectivity, onsite detection, simple operation, and portability [20]. Fluorescent probes for sensing metal ions include metal organic frameworks (MOFs), carbon-based nanomaterials (graphene, nanotube, nanodots and quantum dots), and metal or metal oxide nanomaterials [21– 27] etc. These materials are not adequate for metal ions detection because of their tendency to aggregate, limited quantum yield, poor selectivity, and weak photostability.

Upconversion nanoparticles (UCNPs), which convert near-infrared (NIR) light to emission ranging UV-tovisible wavelength, have attracted enormous attention in recent past on account of the distinct characteristics. These include sharp emissions with long luminescence lifetime, resistance to photobleaching, high photostability, biocompatibility and negligible autofluorescence [28-30]. UCNPs have demonstrated successful applications across various fields, including bioapplications for bioimaging, single-particle biomarking, and therapeutics, optical sensing for temperature, pressure, pH, and molecular detection, and lighting and displays applications for nanoparticle lasing, full-colour display, information storage and anticounterfeiting [31]. In recent years, the UCNPs have been successfully applied to detect antibiotics [32, 33], heavy metal ions [34] as well as pesticides [35]. In addition, the rational core-shell structural design of UCNPs not only generates protective shells for upconversion luminescence (UCL) enhancement, but also regulation stoichiometric composition within a specified scale for fine tuning emission colours and dynamic control of upconversion process. It provides significant flexibility, enabling the synergistic development of new multifunctional biosensor with tuneable properties [36, 37]. The as-synthesized UCNPs are normally capped by hydrophobic ligands. A further requirement for surface modification enables UCNPs for obtaining aqueous dispersion and preventing aggregation. Silica shell exhibits transparency, biocompatibility, non-toxicity, chemical inert, and hydrophilicity. SiO₂ encapsulation results in SiO₂-coated UCNPs both stable and well-dispersed in aqueous solution [38, 39]. Moreover, the silica shell can be further integrated with functional groups through silanization techniques.

In this study, a novel multi-shelled UCNPs@SiO₂ nanoprobe was designed and developed for detection of MnO_4^- and $Cr_2O_7^{2^-}$ anions, via energy transfer (ET; Fig. 1). The oleate capped core-shell-shell-shell UCNPs (denoted as OA-UCNPs) were typically synthesized using a co-precipitation method. Subsequently, the UCNPs were modified with SiO₂ layer (denoted as UCNPs@SiO₂). In addition to the robust UV-to-visible UCL, the resulting UCNPs@SiO₂ were dispersed well in water, chemically stable, and biocompatible. UCNPs@SiO₂

Fig. 1 Schematics of the UCNPs@SiO₂ based UCL sensor for MnO_4^- and $Cr_2O_7^{2-}$ detection

showed significant reduction in UV and visible UCL after $\rm MnO_4^-$ addition, while extensively quenched UV UCL with the presence of $\rm Cr_2O_7^{2-}$. The UCNPs@SiO_ based UCL sensor effectively detected $\rm MnO_4^-$ and $\rm Cr_2O_7^{2-}$ in real samples of lake and tap water. The proposed UCNPs@SiO_ UCL sensor demonstrates feasibility, sensitivity, and selectivity for the determination of $\rm MnO_4^-$ and $\rm Cr_2O_7^{2-}$ in environmental contaminants.

Materials and methods Materials

All the raw materials and solvents were, obtained directly from the suppliers, utilized in current study without any further purification step. The high purity ($\geq 99.9\%$) raw materials i.e., Y(CH₃CO₂)₃·xH₂O, Gd(CH₃CO₂)₃·xH₂O, $Eu(CH_3CO_2)_3 \cdot xH_2O_7$ $Yb(CH_3CO_2)_3 \cdot 4H_2O_7$ Tm(CH₃CO₂)₃·xH₂O, Lu(CH₃CO₂)₃·xH₂O along with the $\ge 98\%$ pure NaOH and NH₄F were supplied by Sigma-Aldrich. The solvents oleic acid (90%) and 1-octadecence (90%) used in current study were supplied by Sigma-Aldrich. While the tetraethyl orthosilicate (TEOS, \geq 99%), ammonium hydroxide (NH₃·H₂O, AR, 25-28%), cyclohexane (99.7%), methanol (AR), and N, N-dimethylformamide (DMF, AR, \geq 99.99%) were supplied by Macklin, China. Ethanol (99.7%) and acetone $(\geq 99.7\%)$ were procured from Guangdong Guanghua Technology, China and Guangzhou brand, China, respectively. Igepal CO-520 (Polyoxyethylene (5) nonylphenyl ether, $(C_2H_4O)_n \cdot C_{15}H_{24}O$, $n \sim 5$) was supplied by Aladdin, China. The aqueous metal anions solution was prepared from their respective salts (analytic or molecular biology grade) such as NaCl, KBr, CH_3COONa , NaHCO₃, Na₂CO₃, NaNO₃, Na₂SO₄, NaH₂PO₄·2H₂O, Na₂HPO₄, Na₃PO₄, and KSCN. Ultrapure water was produced via Milli-Q purification system installed at university. Lake water and tap water were collected from the university town campus of Guangdong University of Technology (GDUT). The membrane with 0.22 µm pore size was supplied by the Jinteng Co., Ltd., Tianjin, China. The disposable sterile syringe was purchased from Jiangsu Kangyou medical equipment Co., Ltd, China.

Instruments

X-ray diffractometer (XRD, Malvern Panalytical DY735, UK) with a Cu K α irradiation ($\lambda = 1.5406$ Å) and 2 θ range of 10-90° with a scanning rate of 5° min⁻¹ was used to study crystal structure of the prepared powders. To evaluate the nanoparticle morphology and size, transmission electron microscopy (TEM, Hitachi HT7700, Japan; 100 kV) was used. For nanoparticle elemental mapping analysis, a high-resolution TEM (HRTEM, FEI TALOS F200S, Czech Republic; 200 kV) was operated under the scanning transmission electron microscopy (STEM) mode coupled with energy-dispersive X-ray spectroscopy (EDS). Fourier transform infrared (FT-IR) transmittance spectra in the 400-4000 cm⁻¹ range with a resolution of 1 cm⁻¹ were measured on a Nicolet 6700 spectrometer (Thermo-Fisher Scientific, USA). Ultraviolet-visible (UV-Vis) absorption spectra and the zeta potentials of the liquid samples were recorded through the Lambda 950 spectrophotometer (PerkinElmer, USA) and the Zeta potential analyzer (Malvern, UK), respectively.

The UCL spectra of liquid samples were measured on a USB 2000+spectrometer (Ocean Optics, USA) using an external fibre-coupled 980 nm diode laser (BWT Beijing Ltd., China). To measure the single particle UCL lifetime, 980 nm NIR laser (Laser 1, B & A Technology Co., Ltd.) coupled Edinburgh FLS980 spectrophotometer was used with 2.9 mW laser power, 971 Hz pulsed frequency and 650 nm spot diameter. The sample droplets were descended onto the glass slides for measuring the nanoparticle UCL lifetime.

Synthesis of UCNPs

Co-precipitation method was used to prepare the NaYF₄:0.2Eu core nanoparticles as reported in [40]with some modifications. Briefly, 2 mL water solution of $Y(CH_3CO_2)_3$ (0.2 M) and $Eu(CH_3CO_2)_3$ (0.2 M) was added to a 50 mL round bottom flask containing oleic acid:1-octadecence (4:6 mL) solvents. Subsequently, the mixture was heated for 30 min at 160 °C until the lanthanide-oleate complex formation and then allowed to cool down to room temperature. The methanol solution containing NaOH (1 mmol) and NH₄F (1.54 mmol) was then added to the resultant mixture and heated again for 30 min at 50 $^{\circ}$ C under constant stirring. Thereafter, the reaction temperature of the mixture was raised to 110 $^{\circ}$ C for methanol evaporation. The resultant mixture was then heated at 300 $^{\circ}$ C for 1 h under an inert (argon) environment. Finally, the resultant NaYF₄:0.2Eu core nanoparticles were allowed to cool naturally and washed several times in different solvents (ethanol, methanol and cyclohexane). The NaYF₄:0.2Eu core nanoparticles redispersed in 4 mL cyclohexane were stored at 4 $^{\circ}$ C in a refrigerator for further use.

To synthesize NaYF₄:0.2Eu@NaYbF₄:0.39Gd/0.01Tm NaYF4:0.2Eu@NaYbF4:0.39Gd/0.01Tm@ (core-shell), NaYbF₄ (core-shell-shell), and NaYF₄:0.2Eu@ $NaYbF_4{:}0.39Gd/0.01Tm@NaYbF_4@NaLuF_4 \quad (core-shell$ shell-shell) nanoparticles, similar procedures were employed, with the exception of precursor solution preparation that Y(CH₃CO₂)₃ and Eu(CH₃CO₂)₃ was replaced with Yb(CH₃CO₂)₃, Gd(CH₃CO₂)₃ and Tm(CH₃CO₂)₃ for core-shell, $Yb(CH_3CO_2)_3$ for core-shell-shell, and Lu(CH₃CO₂)₃ for core-shell-shell nanoparticles. The detail preparation procedures are supplied in the supplementary information.

Silica coating of UCNPs

By using a reverse microemulsion method, the SiO_2 shell was coated onto the as-synthesized oleate capped coreshell-shell-shell UCNPs (OA-UCNPs) [41, 42]. Typically, 1.4 mL of OA-UCNPs in cyclohexane, was mixed with 8.6 mL of cyclohexane, and 0.4 g of CO-520 surfactant and stirred for 10 min. To form a water-in-oil microemulsion, 1.6 g of CO-520 surfactant and 80 µL of NH₃·H₂O were then added and sonicated for 30 min. Then, the mixture was constantly stirred for 48 h at room temperature after the addition of TEOS (40 μ L). Post stirring for 48 h, the acetone was used to precipitate the SiO₂ coated UCNPs (UCNPs@SiO₂). The final product was washed twice with ethanol/water (v: v = 1:1) via centrifugation for 20 min at 9500 rpm speed. The UCNPs@SiO₂ was finally dispersed in water (7 mL, 10.0 mg/mL) and kept in a refrigerator for further use.

UCL determination of anions

To achieve optimum UCL based sensing performance of UCNPs@SiO₂ towards MnO_4^- and $Cr_2O_7^{2^-}$, the optimal sensing time was investigated. The UCL spectra were measured for UCNPs@SiO₂ (1.0 mg/mL) in presence of MnO_4^- (20, 2000 μ M) and $Cr_2O_7^{2^-}$ (1000 μ M) anions, respectively, mixed at different stirring times. The stirring time for MnO_4^- and $Cr_2O_7^{2^-}$ was (2, 5, 10, 15, 20, 30, 40, 60, 180, and 360 min) and (1, 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 40, 50, 60, 120, and 180 min), respectively.

By fixing the optimized time, i.e., 2 min for MnO_4^- and 1 min for $Cr_2O_7^{2^-}$, the MnO_4^- and $Cr_2O_7^{2^-}$ concentration dependent UCL spectra of UCNPs@SiO₂ (1.0 mg/mL) were recorded where the concentrations of MnO_4^- and $Cr_2O_7^{2^-}$ were (0.6, 0.8, 2, 5, 10, 20, 50, 80, 100, 150, 200, 500, 800, 1000, 1400, 1600 and 2000 μ M) and (2, 5, 10, 20, 100, 200, 500, 800, 1000, 1500 and 2000 μ M), respectively.

To evaluate the selectivity and anti-interference properties of UCNPs@SiO2 nanoprobes for determination of MnO₄⁻, the UCL spectra of UCNPs@SiO₂ (1.0 mg/ mL) containing different anions (including 800 µM of MnO₄⁻, Cl⁻, Br⁻, CH₃COO⁻, HCO₃⁻, CO₃²⁻, NO₃⁻, SO42-, H2PO4-, HPO42-, PO43-) at the optimized stirring times (2 min) were measured. Also, the UCL spectra of UCNPs@SiO₂ (1.0 mg/mL) were measured when MnO_4^{-} (800 $\mu M)$ was coexisted with 800 μM of Cl⁻, Br⁻, CH₃COO⁻, HCO₃⁻, CO₃²⁻, NO₃⁻, SO₄²⁻, H₂PO₄⁻, HPO_4^{2-} , PO_4^{3-} individually or in combination with all other anions (800 µM of Cl⁻, Br⁻, CH₃COO⁻, HCO₃⁻, CO_3^{2-} , NO_3^{-} , SO_4^{2-} , $H_2PO_4^{-}$, HPO_4^{2-} , PO_4^{3-}) under the aforementioned optimal conditions to check the antiinterference properties of the UCNPs@SiO2. All the UCL spectra of the UCNPs@SiO2 were carried out at room temperature.

To evaluate the selectivity and anti-interference performance of UCNPs@SiO₂ sensor for determining $Cr_2O_7^{2-}$, the UCL spectra for UCNPs@SiO₂ (1.0 mg/mL) containing different anions (including 2000 μ M of $Cr_2O_7^{2-}$, Cl⁻, Br⁻, CH₃COO⁻, NO₃⁻, SO₄²⁻, SCN⁻, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻) were measured at the optimized stirring time (1 min). Furthermore, the UCL spectra of UCNPs@SiO₂ (1.0 mg/mL) in the presence of $Cr_2O_7^{2-}$ (2000 μ M) coexisted with 2000 μ M of Cl⁻, Br⁻, CH₃COO⁻, NO₃⁻, SO₄²⁻,

SCN⁻, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻ individually or in combination with all other anions (2000 μ M of Cl⁻, Br⁻, CH₃COO⁻, NO₃⁻, SO₄²⁻, SCN⁻, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻) under the aforementioned optimal conditions. All the UCL spectra of the UCNPs@SiO₂ were carried out at room temperature.

Determination of anions in lake and tap water sample

To check the performance of the UCNPs@SiO₂ probes in real samples sensing application, different types of water (tap and lake) was collected and the presence of the anions was assessed. The lake water was injected using disposable sterile syringes and filtered through a 0.22 µm membrane to remove insoluble particles according to the described procedures [33]. For analysis, different concentrations of MnO_4^- (1, 5, 20, 100, 500, 1000 and 2000 μ M) or Cr₂O₇²⁻ (10, 50, 100, 500, 1000 and 1500 µM) were added to the 100-fold ultrapure water diluted lake water. On the other hand, the obtained non-filtered tap water was 100-fold diluted with ultrapure water and loaded with MnO₄⁻ (1, 5, 20, 100, 500, 1000 and 2000 μ M) or Cr₂O₇²⁻ (10, 50, 100, 500, 1000, and 1500 μ M). The UCL spectra were measured for the real samples of UCNPs@SiO₂ (1.0 mg/mL) with anions using 980 nm laser excitation.

Results and discussion Characterization of UCNPs

We developed the NaYF₄:Eu@NaYbF₄:Gd/Tm@NaYbF₄@ NaLuF₄ core-shell-shell UCNPs for UCL covering the UV, blue, and red emission. The 980 nm NIR excitation extracted by Yb³⁺ ions was upconverted for Tm³⁺ UV and blue emission, which was transferred through the Gd sublattice [40]. Interfacial energy transfer from Gd^{3+} (inner shell) to Eu^{3+} (core), is responsible for the red UCL [43, 44]. An extra NaYb F_4 sensitizer layer is designed to obtain the UCL with great enhancement [45], as demonstrated in previous publication of our group [35]. The inert outermost NaLuF₄ shell is to protect the upconversion process [32]. Recently, Chen group [46] developed NaYF₄:Yb, Er UCNPs with surface attaching DNAzymes labelled with BHQ1 dye for detection of Cu²⁺ ions at the single-nanoparticle-level with LOD of 220 pM. Ding et al. [47] developed poly acrylic acid functionalized NaYF₄:Yb, Er/2,2-bipyridine system for ciprofloxacin sensing in the 0.05-1000 ng/mL range and 0.13 ng/mL LOD. However, the proposed core-shell-shell UCNPs present several significant benefits, such as relatively small particle size for nanosensor application, robust strong multicolor UCL covering the UV-Vis region, significantly enhanced UCL due to the extra NaYbF₄ sensitizer layer combined with the inert protection shell $(NaLuF_4)$ as outmost layer.

NaYF₄:Eu core nanoparticles were prepared for successive growth of the layers of NaYbF₄:Gd/Tm, NaYbF₄,

and NaLuF₄ using coprecipitation method [40]. Fig. S1a-c shows representative TEM images of the core (NaYF₄:Eu), core-shell (NaYF4:Eu@NaYbF4:Gd/Tm) and core-shellshell $(NaYF_4:Eu@NaYbF_4:Gd/Tm@NaYbF_4)$ nanoparticles, respectively. The nanoparticles are well-dispersed, uniform in size, and have a regular spherical shape. The particle size distribution histograms are shown in the Fig. S1d-f, which shows the particle diameter of 17.0 nm, 27.0 nm, and 32.9 nm, respectively. The TEM image of the core-shell-shell NaYF4:Eu@NaYbF4:Gd/Tm@ NaYbF₄@NaLuF₄ UCNPs presented in Fig. 2a, shows that the UCNPs are monodispersed, uniform in size, and have a regular spherical shape. The particle size distribution histogram is shown in the Fig. S2, with an average diameter of 39.5 nm. The TEM image of the UCNPs displayed in Fig. 2(b-h) along with corresponding elemental mapping, indicating that the (Y^{3+}, Eu^{3+}) , (Gd^{3+}, Tm^{3+}) and Lu³⁺ are present in the core, inner shell, and outermost shell, respectively, which is consistent with the designed composition. The EDS result shown in Fig. 2i is in line with the elemental mapping and the designed UCNPs composition. Through HRTEM of a single core-shellshell-shell nanoparticle, see Fig. 2j, the lattice fringes are found to exhibit *d*-spacing of 0.520 nm that corresponds to the (100) plane arises from $NaYF_4$ hexagonal structure. To further investigate the structure of the as-synthesized UCNPs, the XRD patterns of the UCNPs (Fig. 2k), core, core-shell, core-shell-shell nanoparticles (Fig. S3), reveal main characteristic peaks at 17.2° (100), 30.0° (110), 30.89° (101), 43.55° (201) and 53.79° (211) of a NaYF₄ hexagonal structure (JCPDS No. 16-0334), which are consistent with the lattice *d*-spacing result indicated in Fig. 2j.

The UCL spectra of the NaYF4:Eu@NaYbF4:Gd/Tm@ NaYbF₄@NaLuF₄ UCNPs carried out at room temperature under 980 nm excitation can be seen in Fig. 2l. The prominent UCL in the UV to visible region centered at 345, 361, 450, 477 and 646 nm, are readily assigned to the Tm³⁺ transitions of ${}^{1}I_{6} \rightarrow {}^{3}F_{4}$, ${}^{1}D_{2} \rightarrow {}^{3}H_{6}$, ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$, ${}^{1}G_{4}$ \rightarrow ${}^{3}\text{H}_{6}$, ${}^{1}\text{G}_{4} \rightarrow {}^{3}\text{F}_{4}$, respectively [40, 48]. The prominent Eu³⁺ peaks were observed at 510 (${}^{5}D_{2} \rightarrow {}^{7}F_{3}$), 525 (${}^{5}D_{1} \rightarrow$ ${}^{7}F_{1}$), 535 (${}^{5}D_{1} \rightarrow {}^{7}F_{2}$), 555 (${}^{5}D_{1} \rightarrow {}^{7}F_{3}$), 590 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), 615 (${}^5D_0 \rightarrow {}^7F_2$) and 695 nm (${}^5D_0 \rightarrow {}^7F_4$) [49]. The UCL peak related to the ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ transition of Gd³⁺ was detected at 312 nm [50]. The UCL intensity was similar for NaYF₄:Eu@NaYbF₄:Gd/Tm core-shell nanoparticles in comparison with NaYF₄:Eu@NaYbF₄:Gd/Tm@NaYbF₄ core-shell-shell nanoparticles with outmost NaYbF₄ sensitization layer, while ~ 100 folds stronger for NaYF₄:Eu@ NaYbF₄:Gd/Tm@NaLuF₄ core-shell-shell nanoparticles with outmost NaLuF₄ protection layer than NaYF₄:Eu@ NaYbF₄:Gd/Tm core-shell nanoparticles, indicating the inert NaLuF₄ layer capable of eliminating the non-radiative energy losses related surface defects and quenching [51]. Inserting of NaYbF $_4$ sensitization layer between

Fig. 2 TEM image of the (**a**) core-shell-shell NaYF₄:0.2Eu@NaYbF₄:0.39Gd/0.01Tm@NaYbF₄@NaLuF₄ UCNPs, (**b**) randomly chosen core-shell-shell-shell UCNPs for elemental analysis, (**c**–**h**) elemental mapping and (**i**) EDS spectrum of the core-shell-shell-shell UCNPs; (**j**) HRTEM image of individual core-shell-shell-shell nanoparticles (*d*-spacing = 0.520 nm); (**k**) XRD pattern of the core-shell-shell-shell UCNPs; (**j**) UCL spectra of NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYbF₄@NaLuF₄ in comparison with NaYF₄:Eu@NaYbF₄:Gd/Tm, NaYF₄:Eu@NaYbF₄:Gd/Tm@NaYbF₄:Gd/Tm@NaYbF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYF₄:Eu@ NaYbF₄:Gd/Tm@ NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYbF₄:Eu@ NaYbF₄:Eu@ NaYbF₄:Eu@ NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYbF₄:Gd/Tm@ NaYF₄:Eu@ NaYbF₄:Eu@ NaYbF₄:E

NaYbF₄:Gd/Tm and NaLuF₄ shells can significantly enhance the UCL intensity ~ 1500-fold, as also illustrated in the inset of Fig. 2l showing the NaYF₄:Eu@NaYbF₄:Gd/Tm@NaYbF₄@NaLuF₄ core-shell-shell-shell UCNPs with significantly enhanced UCL than NaYF₄:Eu@NaYbF₄:Gd/Tm@NaLuF₄ core-shell-shell nanoparticles under irradiation with a 980 nm laser.

Surface SiO₂ modification of UCNPs

The obtained core-shell-shell OA-UCNPs are hydrophobic in nature. On the other hand, silica shell could provide good hydrophilicity to UCNPs. Therefore, we introduced SiO₂ layer on to the UCNPs surface, to facilitate the transformation of hydrophobic OA-UCNPs to hydrophilic UCNPs@SiO₂. Furthermore, the SiO₂ layer protects the UCNPs from the adverse environmental conditions [52]. Figure 3a, represents a typical TEM image of the UCNPs@SiO₂. The UCNPs@SiO₂ are monodispersed with regular spherical shape with the particle size about 44.6 nm (Fig. S4). The SiO₂ shell exhibits integration and uniformity, with the shell thickness approximately 2.6 nm. The FT-IR spectrum of OA-UCNPs, as shown in Fig. 3b, exhibits several absorption peaks at (2926, 2853 cm⁻¹) and (1562, 1463 cm⁻¹) that could be attributed to the characteristic asymmetric and symmetric stretching vibrations of CH₂ and carboxylic (-COO) groups, respectively [48, 53], suggesting the presence of OA capping ligand on the UCNPs surface. In contrast, after encapsulation of UCNPs with SiO₂, the characteristic absorption at 2926, 2853, 1562, and 1463 cm⁻¹ was significantly reduced, indicating successful removal of OA from UCNPs surface. UCNPs@SiO2 exhibit prominent absorption band at 3433 cm⁻¹ due to the O-H stretching frequency from silanol group (Si-OH). In addition, the other absorption bands due to the Si-O-Si (1074 and 795 cm⁻¹), Si-OH (963 cm⁻¹), and Si-O

Fig. 3 (a) TEM image and (b) FT-IR transmittance spectra of UCNPs@SiO₂, with later in comparison with OA-UCNPs; (c) Zeta potential of UCNPs@SiO₂, and (d) UCL spectra of UCNPs@SiO₂ (1.0 mg/mL), UCNPs@SiO₂ (1.0 mg/mL) with presence of MnO_4^- (500 μ M) or $Cr_2O_7^{2-}$ (1000 μ M) in aqueous solution under 980 nm laser excitation

(458 cm⁻¹) were observed [32]. Figure 3c shows the result of the zeta potential analysis. The surface potentials (ζ) for the water-soluble negatively charged UCNPs@SiO₂ was found to be -12.9 mV, which agrees with previously reported result [32], confirming the SiO₂ surface modification. Upon addition of the analyte anions, the UCL of UCNPs@SiO₂ was declined significantly in presence of MnO₄⁻ (Fig. 3d), while the UV UCL of Tm³⁺ at 345, 360 nm was seriously quenched by Cr₂O₇²⁻ (Fig. 3d), indicating that the UCNPs@SiO₂ UCL is feasible for the sensing of MnO₄⁻ and Cr₂O₇²⁻ anions.

UCNPs@SiO₂ sensor optimization for the anion detection

To achieve efficient determination of anions using UCNPs@SiO₂ sensor, we investigated the optimal experimental conditions for the UCNPs@SiO₂ with the anions.

The UCNPs@SiO₂ were dispersed (Fig. S5a) in different solvents including water, ethanol, methanol, and DMF, respectively, and the solvent-dependent UCL was measured. The UCNPs@SiO2 exhibit the similar UCL intensity (Fig. S5b) for dispersion in water, ethanol, methanol, and DMF, respectively. On the other hand, similar as shown in Fig. 3(a) for TEM of UCNPs@SiO₂, Fig. S6 shows the TEM of UCNPs@SiO₂ prepared in repeated batch for one week storage in water, which also exhibit a uniform morphology with SiO₂ layers modification on surface of UCNPs, further indicating water dispersion of UCNPs@SiO₂ remains stable without aggregation. Combining consideration of the MnO_4^- and $Cr_2O_7^{2-}$ anions mostly showing presence in wastewater, the water was then chosen as the optimal solvent for sensing. The UCNPs@SiO₂ sensor was then incubated with MnO_4^{-} and $Cr_2O_7^{2-}$ anions in water and the UCL was investigated to study the time-dependent UCL quenching at different stirring time. The MnO₄⁻ addition at concentrations of 20 µM (Fig. S7a) and 2000 µM (Fig. S7c) significantly quenched the UCL of UCNPs@SiO2 at a 2-minute incubation time, and the corresponding timedependent relative UCL intensity with presence of 20 µM (Fig. S7b) and 2000 μ M (Fig. S7d) MnO₄⁻ concentration exhibits negligible change after 2 min incubation between UCNPs@SiO2 and MnO4-. On the other hand, upon addition of Cr₂O₇²⁻, the UCNPs@SiO₂ show significantly quenched UCL (Fig. S8a) at 1 min of incubation, and progressively enhanced quenching until 7 min incubation time, then reach negligible change after 7 min incubation time, as shown in Fig. S8b for the corresponding timedependent relative UCL intensity. With increasing the incubation time between 1 to 7 min, the enhanced UCL quenching of UCNPs@SiO₂ upon addition of Cr₂O₇²⁻, may be attributed to some possible interferences, such as pH change for UCNPs@SiO₂ sensor, highly chemical oxidation capability for $Cr_2O_7^{2-}$. To eliminate the possible interferences as listed above, the incubation time was thus optimized at 1 min for UCNPs@SiO₂ sensor with Cr₂O₇²⁻. Therefore, we chose water as the optimal solvent, and 2 and 1 min as the optimal time for incubating UCNPs@SiO₂ with MnO₄⁻ and Cr₂O₇²⁻ anions in water, respectively.

Sensing for MnO₄⁻

To assess the UCNPs@SiO₂ sensor sensitivity for determination of MnO₄⁻ anion, the UCL of the designed UCNPs@SiO₂ sensor was measured under the optimal conditions in presence of various concentrations of MnO₄⁻ anion. Figure 4a shows the UCL spectra of UCNPs@SiO2 in wavelength range of 300-400 nm against the different concentrations of MnO_4^- (0.6-2000 μ M) in the homogeneous assay. As the concentration of MnO_4^{-} increased (0.6–2000 μ M), the intensity of UCNPs@SiO₂ UCL main peaks due to the ${}^{1}I_{6} \rightarrow {}^{3}F_{4}$ (345 nm), ${}^{1}\text{D}_{2} \rightarrow {}^{3}\text{H}_{6}$ (361 nm), ${}^{1}\text{D}_{2} \rightarrow {}^{3}\text{F}_{4}$ (450 nm), and ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ (477 nm) transitions of the Tm³⁺ ions was significantly quenched. The UCNPs@SiO₂ sensor exhibits promising sensing behaviour for MnO₄⁻ where the UCL intensity was significantly quenched (95%) after addition of 2000 μ M of MnO₄⁻ (Fig. 4a). A major UCL quenching, about 10%, was observed in presence of MnO_4^- at low concentration of 2 μ M (Fig. 4a). To explore the UCL quenching behaviour towards MnO₄⁻, a Stern-Volmer curve (Fig. 4b) was plotted using the equation, $\frac{I_0}{I} = 1 + K_{sv} [c]$, where I_0 , and I represent the integrated intensity of strong Tm³⁺ UCL at 345 and 360 nm for UCNPs@SiO $_2$ without and with the presence of an analyte, respectively. [c] is the concentration of the analyte in mole (as the quencher), and K_{sv} is Stern-Volmer constant (M^{-1}) [54, 55]. At low MnO_4^- concentration range, a Stern-Volmer plot (Fig. 4b) shows a nonlinear behaviour while an upward trend was observed with increasing MnO_4^- concentration. The nonlinearity of the Stern-Volmer plot indicates the energy transfer among UCNPs@ SiO_2 and MnO_4^- or it may be related to both the static and dynamic quenching [56]. For the UCNPs@SiO₂ sensor towards MnO₄⁻ determination, the UCL quenching efficiency (Fig. 4c), is defined as $[(I_0-I)/I_0]$. Figure 4c shows the efficacy of UCNPs@SiO₂ UCL quenching against the logarithm of MnO₄⁻ concentration, which exhibits well-fitted linear relationships of y = 0.0952x + 0.0626 with correlation coefficients R^2 = 0.9944 in the 0.6–80 μ M concentration range of the MnO₄⁻ (Fig. 4d) and y = 0.4903 x - 0.6863 with $R^2 = 0.9974$ for MnO₄⁻ concentration ranging 80-2000 µM (Fig. 4e), respectively. As revealed in Fig. 4f, by further plotting $c/[(I_0-I)/I_0]$ against c [57], with c referring to the concentration of MnO_4^{-} , good linear relationships were established with y = 4.2315x + 14.596 ($R^2 = 0.9844$) for the MnO₄⁻ concentration in range of 0.6–80 μ M (inset of Fig. 4f) and y = 0.9256x + 273.3 ($R^2 = 0.9981$) for the MnO₄⁻ concentration ranging 80-2000 µM (Fig. S9), indicating that UCNPs@ SiO₂ is qualified for determination of MnO₄⁻ ion in wide 0.6–2000 µM concentration range. The limit of detection (LOD) of UCNPs@SiO₂ toward MnO₄⁻ can be calculated using 3 σ/S [35], where σ is the relative standard deviation of blank sample obtained from 5 measurements, while S represents the calibration curve slope, with a LOD of 0.15 μ M, demonstrating the high sensitivity of the synthesized MnO_4^{-} sensor i.e., UCNPs@SiO_2. In comparison with the reported fluorescent methods for sensing of MnO₄⁻ as listed in Table S1, the proposed UCNPs@SiO₂ sensor exhibits the excellent detection sensitivity with least LOD and wide detection range. Enabled with the NIR excited UCL for improved signal-to-noise ratio and autofluorescence free background, the proposed UCNPs@SiO₂ upconversion nanosensor can be potentially used for sensitive MnO₄⁻ detection in aqueous samples.

We investigated the selectivity of the proposed UCNPs@SiO₂ sensor to detect MnO_4^- by monitoring the UCL response to several anions, including Cl⁻, Br⁻, CH₃COO⁻, HCO₃⁻, CO₃²⁻, NO₃⁻, SO₄²⁻, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻, and MnO₄⁻. Figure 4g and Fig. S10a display the UCNPs@SiO₂ UCL responses for the different anions at a fixed concentration of 800 μ M. Among these anions, only MnO₄⁻ exhibited considerable quenching effect on UCL intensity of UCNPs@SiO₂ with quenching efficiencies of ~75%, whereas other anions showed no apparent effect on UCL response of UCNPs@SiO₂. This suggests that the UCNPs@SiO₂ sensor exhibits high selectivity towards MnO₄⁻ sensing. Moreover, the UCNPs@SiO₂ sensor was subjected to an

Fig. 4 (a) MnO_4^- (0.6–2000 µM) concentration dependent UCL spectra of UCNPs@SiO₂ in aqueous solution, (b) plot of I_0/I against MnO_4^- concentration (Stern-Volmer), (c) the UCL quenching efficiency of UCNPs@SiO₂ against the logarithmic concentration of MnO_4^- , (d) the UCL quenching efficiency showing the linear relationship plot for MnO_4^- concentration in range of 0.6–80 µM, (e) linear relationship plot of UCL quenching efficiency for MnO_4^- concentration in the 80–2000 µM range, (f) relationship between $c/[(I_0-I)/I_0]$ versus MnO_4^- concentration, inset showing the well-fitted linearity for MnO_4^- concentration in the 0.6–80 µM range, (g) UCL intensity of UCNPs@SiO₂ with addition of various anions (800 µM) in aqueous solutior; Anti-interference plot of UCNPs@SiO₂ sensor for MnO_4^- detection, (h) UCL intensity of UCNPs@SiO₂ in presence of the MnO_4^- (800 µM) mixed with other individual anions (800 µM); (i) UCL intensity of UCNPs@SiO₂ in the presence of MnO_4^- (800 µM) mixed with 800 µM other anions. (Note: integrated intensity of UCNPs@SiO₂ SiO₂ UCL at 345 and 361 nm was used.)

anti-interference experiment for the detection of $MnO_4^$ by introducing MnO_4^- into the system concurrently with the addition of other individual or mixed anions. The UCNPs@SiO₂ sensor, in the presence of MnO_4^- of 800 μ M (Fig. 4h and Fig. S10b), did not show a substantial difference compared to the system together with other individual anions (800 μ M). Figure 4i and Fig. S10c, illustrate the comparable UCL quenching in intensity for UCNPs@ SiO₂ sensor when MnO_4^- (800 μ M) was added, both with and without different mixed anions including Cl⁻, Br⁻, CH₃COO⁻, HCO₃⁻, CO₃²⁻, NO₃⁻, SO₄²⁻, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻ at equal concentration (800 μ M). This proves that the other anions show negligible effect on the UCL of UCNPs@SiO₂ sensor to detect MnO_4^- . These results reveal the good selectivity of UCNPs@SiO₂ sensor for detecting MnO_4^- . Thus, UCNPs@SiO₂ could be considered as a promising candidate for detecting MnO_4^- anion in aqueous solution.

Sensing for C₂O₇²⁻

Figure 5a shows UCL spectra at the different $\text{Cr}_2\text{O}_7^{2-}$ concentration under 980 nm laser excitation. With increase in the $\text{Cr}_2\text{O}_7^{2-}$ concentration (2–2000 μ M), the intensity of UCNPs@SiO₂ was significantly quenched for the UCL at 345, and 361 nm, which are attributed to the ${}^1\text{I}_6 \rightarrow {}^3\text{F}_4$ and ${}^1\text{D}_2 \rightarrow {}^3\text{H}_6$ transitions of Tm³⁺ ions. The UCNPs@SiO₂ sensor exhibit superior sensitivity behaviour for $\text{Cr}_2\text{O}_7^{2-}$ through the quenching of ~74% UCL intensity

Fig. 5 (a) $Cr_2O_7^{2-}$ (2–2000 μ M) concentration dependent UCL spectra of UCNPs@SiO₂ in aqueous solution, (b) Stern-Volmer plot (l_0 // versus $Cr_2O_7^{2-}$ concentration), (c) the UCL quenching efficiency of UCNPs@SiO₂ against the concentration of $Cr_2O_7^{2-}$, the linear relationship plot of the UCL quenching efficiency for $Cr_2O_7^{2-}$ concentration in the (d) 2–500 μ M and (e) 500–2000 μ M range, (f) plot of $c/[(l_0-1)/l_0]$ versus concentration of $Cr_2O_7^{2-}$, inset showing simulated linearity correlation for $Cr_2O_7^{2-}$ concentration in the 2–500 μ M range, (g) UCL intensity of UCNPs@SiO₂ with addition of various anions (2000 μ M) in aqueous solution; Anti-interference properties of the UCNPs@SiO₂ to detect $Cr_2O_7^{2-}$ in aqueous solution, (h) UCL intensity of UCNPs@SiO₂ with the addition of $Cr_2O_7^{2-}$ together with other individual anions (2000 μ M), and (i) UCL intensity of UCNPs@SiO₂ with the addition of $Cr_2O_7^{2-}$ together with other mixed anions at a fixed 2000 μ M concentration. (Note: integrated intensity of UCNPs@SiO₂ UCL at 345 and 361 nm was used.)

when 2000 μ M of Cr₂O₇²⁻ anion was added (Fig. 5a). For 10 μ M of Cr₂O₇²⁻ concentration, the major UCL quenching (10%) was observed (Fig. 5a). To investigate the UCL quenching behaviour towards Cr₂O₇²⁻ determination, Fig. 5b illustrates the Stern-Volmer plot extracted from the UCL intensity shown in Fig. 5a. The Stern-Volmer plot displays an appreciable nonlinear behaviour with an upward curvature with increase in Cr₂O₇²⁻ concentration in range of 2-2000 μ M (Fig. 5b), revealing an energy transfer from UCNPs@SiO₂ to Cr₂O₇²⁻ or can be ascribed to both the static and dynamic quenching [56]. For the UCNPs@SiO₂ sensing probe toward Cr₂O₇²⁻ determination, the quenching efficiency for UCNPs@ SiO₂ UCL at 345 and 361 nm against the logarithmic concentration of Cr₂O₇²⁻ is shown in Fig. 5c, which shows

well-described linear relationship of $y = 0.1474 \ x - 0.0395$ with $R^2 = 0.9948$ for the concentration of $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ in range of 2–500 μM (Fig. 5d) and $y = 0.6737 \ x - 1.4801$ with $R^2 = 0.9972$ for $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ concentration ranging 500–2000 μM (Fig. 5e), respectively. By further plotting $c/[(I_0 - I)/I_0]$ against c [58], with c denoting the concentration of $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$, well-fitted linear relationships were accomplished with $y = 2.9397 \ x + 73.66 \ (R^2 = 0.9961)$ for $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ concentration in range of 2–500 μM (inset of Fig. 5f), and $y = 0.8368 \ x + 1013.1 \ (R^2 = 0.9979)$ for $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ concentration ranging 500–2000 μM (Fig. S11), indicating that UCNPs@SiO₂ is qualified for determination of $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ ion in wide 2–2000 μM concentration range. The LOD of UCNPs@SiO₂ for $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ ion was calculated to be 0.04 μM via the 3 σ/S formula [33], indicating the highly sensitive determination of $\text{Cr}_2\text{O}_7^{2^-}$ by the UCNPs@SiO₂ sensor. The proposed UCNPs@SiO₂ sensor towards $\text{Cr}_2\text{O}_7^{2^-}$ demonstrates the superior LOD and wide linear detection range than those existing fluorescent sensor materials, as shown in Table S1. With the advantages of NIR responsive UCL for negligible autofluorescence and improved signal-to-noise ratio, the UCNPs@SiO₂ upconversion nanosensor holds the promise for sensitive determination of $\text{Cr}_2\text{O}_7^{2^-}$ for environmental monitoring and food safety.

To investigate the selectivity of the proposed UCNPs@ SiO_2 sensor for detecting $Cr_2O_7^{2-}$, the UCL response to different anions, including Cl⁻, Br⁻, CH₃COO⁻, NO₃⁻, SO_4^{2-} , SCN^- , $H_2PO_4^{-}$, HPO_4^{2-} , PO_4^{3-} , and $Cr_2O_7^{2-}$ was monitored. Figure 5g and Fig S12a, show the UCL response of the UCNPs@SiO₂ sensor in presence of the above anions in aqueous solution at the fixed 2000 μ M concentration. Among the above anions, only Cr₂O₇²⁻ exhibited considerable quenching effect on UCL intensity of UCNPs@SiO2 with quenching efficiencies of \sim 74%, whereas other anions showed no apparent effect on UCL response of UCNPs@SiO2. This suggests that the UCNPs@SiO₂ system exhibits excellent selectivity towards Cr₂O₇²⁻ sensing. Furthermore, the UCNPs@ SiO₂ sensor was subjected to an anti-interference experiment for the detection of $Cr_2O_7^{2-}$ by introducing $Cr_2O_7^{2-}$ into the system concurrently with the addition of other individual or mixed anions (2000 $\mu M).$ The UCNPs@ SiO₂ sensor, in the presence of $Cr_2O_7^{2-}$ (Fig. 5h and Fig. S12b), exhibited no significant difference when compared to the system together containing other individual anions (2000 μ M). Figure 5i and Fig. S12c, illustrate the similar UCL quenching in intensity for the UCNPs@SiO₂ sensor when $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ was added (2000 μ M), both with and without different mixed anions such as Cl⁻, Br⁻, CH₃COO⁻, NO_3^- , SO_4^{2-} , SCN^- , $H_2PO_4^-$, HPO_4^{2-} , and PO_4^{3-} at equal concentration (2000 µM). These results indicate that the other anions exhibit negligible effect on the UCL response of UCNPs@SiO₂ to detect Cr₂O₇²⁻. In summary, the excellent sensitivity and high selectivity of the UCNPs@SiO₂ sensor towards $Cr_2O_7^{2-}$ make them to be potential for detecting ionic pollutants in wastewater.

Sensing for anions in real lake and tap water

To explore the applying feasibility of the UCNPs@SiO₂ sensor to determine MnO_4^- and $Cr_2O_7^{2-}$ in food and environmental real samples, we conducted spike experiments in two different types of water (lake and tap) obtained from GDUT. Known concentration of MnO_4^- (1-2000 μ M) and $Cr_2O_7^{2-}$ (10-1500 μ M) was added to UCNPs@SiO₂ and their UCL was measured. The UV UCL peaks (345 and 361 nm) were quenched upon increasing the lake water (Figs. S13a, and S14a) and tap water (Figs. S13b, and S14b) contamination with MnO_4^- ,

Table 1	Determination	and recovery	of MnO_4^-	in lake and	tap
water					

Samples	MnO₄ [−] added	MnO₄ [−] found	MnO₄ [−] recov- ery (%)	RSD (%) n=3
Lake water	1	0.96	96.3	4.5
	5	4.9	97.1	4.8
	20	21.8	109.0	3.8
	100	101.8	101.8	2.8
	500	462.4	92.5	2.4
	1000	1019.5	102.0	3.5
	2000	2161.0	108.0	3.2
Tap water	1	1.1	109.8	4.8
	5	5.5	109.3	4.1
	20	18.3	91.3	0.9
	100	114.4	114.4	1.6
	500	462.1	92.4	3.0
	1000	970.3	97.0	2.0
	2000	2095.8	104.8	2.4

Table 2 Determination and recovery of $Cr_2O_7^{2-}$ in lake and tap water

Samples	Cr ₂ O ₇ ^{2–} added	Cr ₂ O ₇ ²⁻ found	Cr ₂ O ₇ ^{2–} recov- ery (%)	RSD (%)
				n=3
Lake water	10	9.1	91.0	3.3
	50	48.3	96.6	1.6
	100	97.6	97.6	5.1
	500	530.3	106.1	3.7
	1000	979.6	98.0	0.7
	1500	1469.9	98.0	1.1
Tap water	10	10.3	103.1	2.5
	50	51.6	103.3	4.7
	100	98.0	98.0	3.8
	500	539.1	107.8	3.1
	1000	996.4	99.6	1.7
	1500	1515.6	101.0	0.9

and Cr₂O₇²⁻, respectively. The reliability of UCNPs@ SiO₂ as MnO₄⁻ and Cr₂O₇²⁻ anion sensor and its practical application was explored via a technique of standard addition and recovery test. Table 1 presents that the recovery rates of MnO_4^- are 92.5–109.0% and 91.3– 114.4% for lake and tap water, respectively. Table 2 displays that the recovery rates of $Cr_2O_7^{2-}$ are 91.0–106.1% and 98.0–107.8% for lake and tap water, respectively. The relative standard deviations (RSD) for all real sample measurements are below 5.1%, indicating that the reproducibility of the UCNPs@SiO₂ in real sample analysis is robust and reliable. Thus, the proposed UCNPs@SiO₂ nanosensor shows impressive performance considering both the practical and reliable sensing aspects and holds promise for the on-site determination of MnO₄⁻ and $\operatorname{Cr_2O_7^{2-}}$ anions in real samples.

Fig. 6 (a) UV-Vis absorption spectra of different anions, MnO_4^- (~1 mM), $Cr_2O_7^{2-}(\sim 0.5 \text{ mM})$, others are 0.1 ~ 3.33 mM; (b) UV-Vis absorption spectra of the UCNPs@SiO₂ (1.0 mg/mL), UCNPs@SiO₂ with MnO_4^- (0.5 mM) and UCNPs@SiO₂ with $Cr_2O_7^{2-}$ (0.5 mM), contrasted with UCL spectrum of UCNPs@SiO₂ (1.0 mg/mL) at 980 nm laser excitation in aqueous solution; (c) The UCL lifetime decay of UCNPs@SiO₂ with and without MnO_4^- addition

Mechanism of MnO_4^- and $Cr_2O_7^{2-}$ sensing

In general, the Förster resonance energy transfer (FRET) refers to a non-radiative phenomenon occurring on the basis of overlap between donor emission and the acceptor absorption, relative orientation of donor-acceptor dipoles, and the donor-acceptor distance $\sim 1-10$ nm [59, 60]. On the other hand, the inner filter effect (IFE) is known as a radiative energy transfer process, requiring that the excitation/emission of the donor overlapped with the acceptor absorption [61]. The FRET process will affect the excited-state dynamics of the energy donor, decreasing its luminescence decay lifetime, which differentiates FRET from IFE process. UV-Vis absorption spectra were recorded for various anions and UCNPs@SiO2 before and after addition of MnO_4^{-} and $Cr_2O_7^{2-}$. MnO_4^{-} exhibits two prominent absorption peaks in the UV-Vis region, specifically peaking at 311 and 525 nm (Fig. 6a), which could be ascribed to $O \rightarrow Mn$ charge transfer [62]. $Cr_2O_7^{2-}$ anion has distinct absorption observed at 355 nm (Fig. 6a), in line with the reported optical characteristics of Cr (VI) [63]. The UV absorption at 290 nm for $Cr_2O_7^{2-}$ is attributed to the O \rightarrow Cr charge transfer [64]. As shown in Fig. 6b, the UCNPs@SiO₂ display negligible absorption, whereas the MnO₄⁻ added UCNPs@ SiO₂ (UCNPs@SiO₂@MnO₄⁻) and Cr₂O₇²⁻ added one (denoted as UCNPs@SiO2@Cr2O22-) exhibit characteristic absorption peaks for MnO₄⁻ and Cr₂O₇²⁻, respectively. The UCL of UCNPs@SiO2 at 345 and 361 nm shows significant overlap with 355 nm $\mathrm{Cr_2O_7^{2-}}$ absorption. On the other hand, the UCL of UCNPs@SiO₂ at 345, 361, 450, and 477 nm shows complete overlap with the 311 and 525 nm absorption bands of MnO_4^{-} .

To further understand the energy transfer processes, under 980 nm laser excitation, the UCL lifetime decay for Tm³⁺ at 450 nm was assessed, both in the presence and absence of MnO_4^- (Fig. 6c). Considering the lifetime decay as non-monoexponential, the average decay lifetime of the UCNPs@SiO₂ sensor was calculated via the following Eq. [65, 66],

$$\tau_{\text{avg}} = \frac{\int_{0}^{\infty} tI(t) \,\mathrm{d}t}{\int_{0}^{\infty} I(t) \,\mathrm{d}t}$$

where I(t) is the UCL intensity at given time t after ceasing the excitation. For UCNPs@SiO2 sensor, the average lifetime (τ_{avg} , ms) of 450 nm Tm³⁺ UCL is found to be 0.178 ms. Upon MnO_4^- addition, a 1D_2 UCL of the ${
m Tm}^{3+}$ decayed faster with decreasing $au_{
m avg}$ by 0.104 ms for UCNPs@SiO₂ with MnO₄⁻ (50 μ M) and by 0.065 ms for UCNPs@SiO₂ with MnO_4^- (2000 µM). This drastic change in UCL lifetime experimentally indicates that the non-radiative FRET from UCNPs@SiO2 to MnO4took place [32, 60], which agrees with the nonlinear trend in the Stern-Volmer plot and confirms the occurrence of combined static and dynamic UCL quenching. To calculate the FRET efficiency (E) following equation [60], $E = 1 - \frac{\tau_{\rm DA}}{\tau_{\rm D}}$, is used, where $\tau_{\rm DA}$ and $\tau_{\rm D}$ are the UCNPs@SiO₂ (donor) lifetime with and without MnO₄⁻ acceptor, respectively. The extent of efficient FRET for the UCNPs@SiO₂ sensor is determined to be 42% and 63% for MnO_4^- concentration of 50 and 2000 μ M, respectively. The enhancement in the FRET efficiency of the sensor with the increase in MnO_4^- content is in line with the two different linear 0.6-80 and 80-2000 µM concentration ranges for MnO₄⁻ sensing, as demonstrated in Fig. 4d and e. Furthermore, the TEM results showing the diameter of core-shell NaYF₄:Eu@NaYbF₄:Gd/Tm nanoparticles of 27.0 nm (Fig. S1b and e) and NaYF₄:Eu@ $NaYbF_4:Gd/Tm@NaYbF_4@NaLuF_4$ UCNPs@SiO₂ of 44.6 nm (Fig. 3a and Fig. S4), indicates the least FRET distance from Tm³⁺ in the inner NaYbF₄:Gd/Tm shell to MnO_4^- at ~ 8.8 nm, which further support the FRET process from UCNPs@SiO₂ to the analyte quencher (Tm³⁺ 345, 361, 450, 477 nm UCL quenched by MnO_4^- , Tm^{3+} 345, 361 nm UCL quenched by $Cr_2O_7^{2-}$). On the other hand, the IFE process occurs with luminescence lifetime remaining unchanged by introduction of energy acceptor [67], thus IFE should also be possible for the operational energy transfer mechanism for UCNPs@SiO₂ sensor detecting anions (MnO₄⁻ and Cr₂O₇²⁻). Taken all together, it is plausible that the UCNPs@SiO₂ upconversion nanosensor could involve both FRET and IFE mechanisms to detect MnO₄⁻ and Cr₂O₇²⁻ anions.

Conclusions

The autofluorescence free UCNPs@SiO2 UCL nanosensor was successfully developed for label-free and fast determination of MnO_4^- and $Cr_2O_7^{2-}$ anions. The surface SiO₂ modification enables UCNPs with good water solubility and biocompatibility. The highly efficient and multicolour UCL of UCNPs@SiO2 was effectively quenched by MnO_4^- and $Cr_2O_7^{2-}$ anions with fast response time of 2 and 1 min, respectively. The UCNPs@SiO₂ nanosensor exhibits linear detection ranges of [0.6-80 µM and $80-2000 \ \mu\text{M}$], [2-500 μM and 500-2000 μM] with the LOD at 0.15 μ M and 0.04 μ M for MnO₄⁻ and Cr₂O₇²⁻ anions, respectively. The UCNPs@SiO₂ nanosensor with good sensing capability, demonstrated satisfactory recognition and determination of MnO_4^- and $Cr_2O_7^{2-}$ in real lake and tap water samples. UCL lifetime decay analysis reveals the energy transfer from UCNPs@SiO₂ to anions through the combination of FRET and plausible IFE processes. The proposed UCNPs@SiO2 UCL nanosensor offers autofluorescence free and rapid determination of MnO_4^- and $Cr_2O_7^{2-}$ anions with high sensitivity, good specificity, low LOD, and wide linear detection range, holding great promising for reliable environmental monitoring and food sample detection applications.

Supplementary Information

The online version contains supplementary material available at https://doi.or g/10.1186/s13065-025-01415-3.

Supplementary Material 1

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075052, 62335008, 62122028), Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012988, 2023B1515040018) and Science and Technology Planning Project of Guangdong Province (No. 2022A0505020005). The authors would like to acknowledge United Arab Emirates University for the financial support with the Grant Code-G00004525 and fund code 12S171.

Author contributions

KX contributed to the preparation, characterization, sensing performance of the work, and generation of the figures. HW accomplished the conception or design of the work. WS and WC performed UCL and UCL lifetime assay. ARA, QZ, and STM contributed to participation of experiment design. Drafting the article was prepared by HW, MM and DAH. HW did the critical revision of the article and final approval of the version to be published. All authors read and approved the final manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075052, 62335008, 62122028), Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012988, 2023B1515040018) and Science and Technology Planning Project of

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional file.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Received: 24 December 2024 / Accepted: 10 February 2025 Published online: 05 March 2025

References

- . Keith L, Telliard W. ES&T special report: priority pollutants: la perspective view. Environ Sci Technol. 1979;13(4):416–23.
- 2. Ding B, Liu SX, Cheng Y, Guo C, Wu XX, Guo JH, Liu YY, Li Y. Heterometallic alkaline earth–lanthanide Ball–Lall microporous metal–organic framework as bifunctional luminescent probes of Al^{3+} and MnO_4^- . Inorg Chem. 2016;55(9):4391–402.
- Suryawanshi SB, Mahajan PG, Bhopate DP, Kolekar GB, Patil SR, Bodake AJ. Selective recognition of MnO₄⁻ ion in aqueous solution based on fluorescence enhancement by surfactant capped naphthalene nanoparticles: application to ultratrace determination of KMnO₄ in treated drinking water. J Photochem Photobiol A: Chem. 2016;329:255–61.
- 4. Zhu Z, Xue J, Wen B, Ji W, Du B, Nie J. Ultrasensitive and selective detection of MnO_4^- in aqueous solution with fluorescent microgels. Sens Actuators B: Chem. 2019;291:441–50.
- Hao L, Qi Y, Wu Y, Xia D. Determination of trace potassium permanganate in tap water by solid phase extraction combined with spectrophotometry. Heliyon. 2023;9(3):e13587.
- Yuan P-L, Tong L, Li X-X, Dong W-K, Zhang Y. A benzimidazole-appended double-armed salamo type fluorescence and colorimetric bifunctional sensor for identification of MnO₄⁻ and its applications in actual water samples. Spectrochim Acta Mol Biomol Spectrosc. 2024;315:124252.
- Ma J-J, Liu W-s. Effective luminescence sensing of Fe³⁺, Cr₂O₇²⁻, MnO₄⁻ and 4-nitrophenol by lanthanide metal–organic frameworks with a new topology type. Dalton Trans. 2019;48(32):12287–95.
- Yoo J, Ryu U, Kwon W, Choi KM. A multi-dye containing MOF for the ratiometric detection and simultaneous removal of Cr₂O₇²⁻ in the presence of interfering ions. Sens Actuators B: Chem. 2019;283:426–33.
- Liu J, Ye Y, Sun X, Liu B, Li G, Liang Z, Liu Y. A multifunctional zr (iv)-based metal–organic framework for highly efficient elimination of Cr (Vi) from the aqueous phase. J Mater Chem A. 2019;7(28):16833–41.
- Suryawanshi SB, Mahajan PG, Kolekar GB, Bodake AJ, Patil SR. Selective recognition of cr (VI) ion as Cr₂O₇²⁻ in aqueous medium using CTAB-capped anthracene-based nanosensor: application to real water sample analysis. J Phys Org Chem. 2019;32(4):e3923.
- Liu X, Li T, Wu Q, Yan X, Wu C, Chen X, Zhang G. Carbon nanodots as a fluorescence sensor for rapid and sensitive detection of cr (VI) and their multifunctional applications. Talanta. 2017;165:216–22.
- 12. Xu T-Y, Li J-M, Han Y-H, Wang A-R, He K-H, Shi Z-F. A new 3D four-fold interpenetrated dia-like luminescent zn (II)-based metal–organic framework: the sensitive detection of Fa^{3+} , $Cr_2O_7^{-2-}$, and CrO_4^{-2-} in water, and nitrobenzene in ethanol. New J Chem. 2020;44(10):4011–22.
- Séby F, Charles S, Gagean M, Garraud H, Donard OFX. Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry-study of the influence of interfering ions. J Anal Spectrom. 2003;18(11):1386–90.

- 14. Rodziewicz L, Zawadzka I. Rapid determination of chloramphenicol residues in milk powder by liquid chromatography–elektrospray ionization tandem mass spectrometry. Talanta. 2008;75(3):846–50.
- Tang Z, Chen Z, Li G, Hu Y. Multicolor nitrogen dots for rapid detection of thiram and chlorpyrifos in fruit and vegetable samples. Anal Chim Acta. 2020;1136:72–81.
- Korak JA, Huggins R, Arias-Paic M. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Res. 2017;118:141–51.
- 17. Jung C, Heo J, Han J, Her N, Lee S-J, Oh J, Ryu J, Yoon Y. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol. 2013;106:63–71.
- Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 2009;200:59–77.
- Ye Z, Weng R, Ma Y, Wang F, Liu H, Wei L, Xiao L. Label-free, single-particle, colorimetric detection of permanganate by GNPs@ Ag core-shell nanoparticles with dark-field optical microscopy. Anal Chem. 2018;90(21):13044–50.
- Leese RA, Wehry E. Corrections for inner-filter effects in fluorescence quenching measurements via right-angle and front-surface illumination. Anal Chem. 1978;50(8):1193–7.
- Burratti L, Ciotta E, De Matteis F, Prosposito P. Metal nanostructures for environmental pollutant detection based on fluorescence. Nanomaterials. 2021;11(2):276.
- Chen Y, Chen GH, Liu XY, Xu JW, Zhou XJ, Yang T, Yuan CL, Zhou CR. Upconversion luminescence, optical thermometric properties and energy transfer in Yb³⁺/Tm³⁺ co-doped phosphate glass. Opt Mater. 2018;81:78–83.
- Chen J, Liu J, Li J, Xu L, Qiao Y. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. J Colloid Interface Sci. 2017;485:167–74.
- 24. Sam B, George L, Varghese NSY. Fluorescein based fluorescence sensors for the selective sensing of various analytes. J Fluoresc. 2021;31:1251–76.
- Kayani KF, Omer KM. A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations. New J Chem. 2022;46(17):8152–61.
- 26. Kayani KF. Nanozyme based on bimetallic metal–organic frameworks and their applications: a review. Microchem J. 2025;28:112363.
- Kayani KF, Abdullah CN. A Dual-Mode Detection Sensor based on Nitrogen-Doped Carbon dots for Visual Detection of Fe (III) and ascorbic acid via a smartphone. J Fluoresc. 2024. https://doi.org/10.1007/s10895-024-03604-0.
- Lv J, Zhao S, Wu S, Wang Z. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing. Biosens Bioelectron. 2017;90:203–9.
- Sheng W, Shi Y, Ma J, Wang L, Zhang B, Chang Q, Duan W, Wang S. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels. Mikrochim Acta. 2019;186:1–9.
- Zhang T, Ying D, Qi M, Li X, Fu L, Sun X, Wang L, Zhou Y. Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens. Molecules. 2019;24(15):2692.
- Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-earth doping in nanostructured inorganic materials. Chem Rev. 2022;122(6):5519–603.
- Wan T, Song W, Wen H, Qiu X, Zhan Q, Chen W, Yu H, Yu L, Aleem AR. The exploration of upconversion luminescence nanoprobes for tobramycin detection based on Förster resonance energy transfer. Mater Today Adv. 2023;19:100409.
- Aleem AR, Chen R, Wan T, Song W, Wu C, Qiu X, Zhan Q, Xu K, Gao X, Dong T. Highly water-soluble and biocompatible hyaluronic acid functionalized upconversion nanoparticles as ratiometric nanoprobes for label-free detection of nitrofuran and doxorubicin. Food Chem. 2024;438:137961.
- Surya P, Nithin A, Sundaramanickam A, Sathish M. Synthesis and characterization of nano-hydroxyapatite from fish bone and its effects on human osteoblast bone cells. J Mech Behav Biomed. 2021;119:104501.
- Chen R, Wen H, Gao X, Zhao W, Aleem AR. Natural and polyanionic heparin polysaccharide functionalized upconversion nanoparticles for highly sensitive and selective ratiometric detection of pesticide. Int J Biol Macromol. 2024;275:133097.
- Fan Y, Liu L, Zhang F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today. 2019;25:68–84.
- Liu S, Yan L, Huang J, Zhang Q, Zhou B. Controlling upconversion in emerging multilayer core–shell nanostructures: from fundamentals to frontier applications. Chem Soc Rev. 2022;51(5):1729–65.

- Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc. 2022;17(4):1028–72.
- SedImeier A, Gorris HH. Surface modification and characterization of photonupconverting nanoparticles for bioanalytical applications. Chem Soc Rev. 2015;44(6):1526–60.
- Wen H, Zhu H, Chen X, Hung TF, Wang B, Zhu G, Yu SF, Wang F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew Chem. 2013;52:13419–23.
- 41. Li Z, Zhang Y, Jiang S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater. 2008;20(24):4765–9.
- Nigoghossian K, Messaddeq Y, Boudreau D, Ribeiro SJ. UV and temperature-sensing based on NaGdF₄: Yb³⁺: Er³⁺@ SiO₂-Eu (tta)₃. ACS Omega. 2017;2(5):2065–71.
- 43. Zhou B, Tao L, Chai Y, Lau SP, Zhang Q, Tsang YH. Constructing interfacial energy transfer for photon up-and down-conversion from lanthanides in a core–shell nanostructure. Angew Chem Int Ed. 2016;55(40):12356–60.
- 44. Hou Z, Deng K, Li C, Deng X, Lian H, Cheng Z, Jin D, Lin J. 808 nm lighttriggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd³⁺-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomater. 2016;101:32–46.
- Zheng X, Shikha S, Zhang Y. Elimination of concentration dependent luminescence quenching in surface protected upconversion nanoparticles. Nanoscale. 2018;10(35):16447–54.
- Wang X, Zhang X, Huang D, Zhao T, Zhao L, Fang X, Yang C, Chen G. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal Chem. 2021;93(34):11686–91.
- Ding X, Ahmad W, Wu J, Rong Y, Ouyang Q, Chen Q. Bipyridine-mediated fluorescence charge transfer process based on copper ion grafted upconversion nanoparticle platform for ciprofloxacin sensing in aquatic products. Food Chem. 2023;404:134761.
- Su S, Mo Z, Tan G, Wen H, Chen X, Hakeem DA. PAA modified upconversion nanoparticles for highly selective and sensitive detection of Cu²⁺ ions. Front Chem. 2021;8:619764.
- Peng D, Ju Q, Chen X, Ma R, Chen B, Bai G, Hao J, Qiao X, Fan X, Wang F. Lanthanide-doped energy cascade nanoparticles: full spectrum emission by single wavelength excitation. Chem Mater. 2015;27(8):3115–20.
- Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10(12):968–73.
- Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on sizedependent luminescence of upconversion nanoparticles. Angew Chem Int Ed. 2010;49(41):7456–60.
- Li C, Liu J, Alonso S, Li F, Zhang Y. Upconversion nanoparticles for sensitive and in-depth detection of Cu²⁺ ions. Nanoscale. 2012;4(19):6065–71.
- Kaviya M, Ramakrishnan P, Mohamed SB, Ramakrishnan R, Gimbun J, Veerabadran KM, Kuppusamy MR, Kaviyarasu K, Sridhar TM. Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater Today-Proc. 2021;36:204–207.
- 54. Gehlen MH. The centenary of the Stern-Volmer equation of fluorescence quenching: from the single line plot to the SV quenching map. J Photochem Photobiol C. 2020;42:100338.
- Lakowicz J. Quenching of fluorescence in principles of fluorescence spectroscopy. Springer, Berlin; 2006.
- Sanda S, Parshamoni S, Biswas S, Konar S. Highly selective detection of palladium and picric acid by a luminescent MOF: a dual functional fluorescent sensor. Chem Commun. 2015;51(30):6576–9.
- 57. Liu W, Zhang J, Yin X, He X, Wang X, Wei Y. Luminescent layered europium hydroxide as sensor for multi-response to $Cr_2O_7^{2-}$ or MnO_4^{-} based on static quenching and inner filter effect. Mater Chem Phys. 2021;266:124540.
- Li Q, Li D, Wu Z-Q, Shi K, Liu T-H, Yin H-Y, Cai X-B, Fan Z-L, Zhu W, Xue D-X. RhB-Embedded zirconium–biquinoline-based MOF Composite for highly sensitive probing cr (VI) and photochemical removal of CrO₄²⁻, Cr₂O₇²⁻, and MO. Inorg Chem. 2022;61(38):15213–24.
- Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed. 2006;45(28):4562–89.
- Wen S, Zhou J, Schuck PJ, Suh YD, Schmidt TW, Jin D. Future and challenges for hybrid upconversion nanosystems. Nat Photonics. 2019;13(12):828–38.
- Abazari R, Mahjoub AR, Shariati J. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J Hazard Mater. 2019;366:439–51.

- 63. Subramaniam P, Selvi NT. Spectral evidence for the one-step three-electron oxidation of phenylsufinylacetic acid and oxalic acid by cr (VI). Am J Anal Chem. 2013;4:20–9.
- Sanchez-Hachair A, Hofmann A. Hexavalent chromium quantification in solution: comparing direct UV-visible spectrometry with 1, 5-diphenylcarbazide colorimetry. C R Chim. 2018;21(9):890–6.
- Wen H, Tanner PA. Energy transfer and luminescence studies of Pr³⁺, Yb³⁺ co-doped lead borate glass. Opt Mater. 2011;33(11):1602–6.
- Cui J, Wen H, Xie S, Song W, Sun M, Yu L, Hao Z. Synthesis and characterization of aluminophosphate glasses with unique blue emission. Mater Res Bull. 2018;103:70–6.
- 67. Zhang J, Lu X, Lei Y, Hou X, Wu P. Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase. Nanoscale. 2017;9(40):15606–11.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.