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Introduction
Malaria is an infectious disease caused by Plasmodium, 
a protozoan parasite, and transmitted by the bite of a 
female Anopheles mosquito. As per the World Health 
Organization’s (WHO) 2023 World Malaria Report, glob-
ally, there were ~ 249  million malaria cases in 2022, of 
which 609,000 were fatal [1]; about 94% of these cases 
were estimated to occur in the WHO African Region. 
Although two new vaccines are now available for malaria 
prevention in children [1], malaria therapy using small 
molecules is facing tremendous challenges. The Plasmo-
dium parasite has developed resistance to all clinically 
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Abstract
A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) 
model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) 
data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model 
development. The open-access and code-free KNIME platform was used to develop a workflow to train the 
model on 80% of data (N ~ 12k). The hyperparameter values were optimized to achieve the highest predictive 
accuracy with nine different molecular fingerprints (MFPs), among which Avalon MFPs (referred to as RF-1) 
provided the best results. RF-1 displayed 91.7% accuracy, 93.5% precision, 88.4% sensitivity and 97.3% area under 
the Receiver operating characteristic (AUROC) for the remaining 20% test set. The predictive performance of RF-1 
was comparable to that of the malaria inhibitor prediction platform (MAIP), a recently reported consensus model 
based on a large proprietary dataset. However, hits obtained from RF-1 and MAIP from a commercial library did not 
overlap, suggesting that these two models are complementary. Finally, RF-1 was used to screen small molecules 
under clinical investigations for repurposing. Six molecules were purchased, out of which two human kinase 
inhibitors were identified to have single-digit micromolar antiplasmodial activity. One of the hits (compound 1) was 
a potent inhibitor of β-hematin, suggesting the involvement of parasite hemozoin (Hz) synthesis in the parasiticidal 
effect. The training and test sets are provided as supplementary information, allowing others to reproduce this 
work.
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available drugs leading to increased incidences of multi-
drug resistant (MDR) malaria [2, 3]. Artemisinin-based 
combination therapies (ACTs) are prescribed to tackle 
MDR malaria [4], however, treatment failures with ACTs 
are increasingly being reported [5, 6]. Thus, novel small 
molecules with unique mechanisms of action are needed 
to circumvent the resistance problem and improve clini-
cal outcomes.

Machine learning (ML) and artificial intelligence (AI) 
methods are increasingly being applied in drug discov-
ery [7–11]. One of the major applications of ML and AI 
is the development of predictive models to estimate a 
compound’s biological activity, toxicity, or physicochemi-
cal properties. The availability of such predictive models 
can reduce the overall cost of the drug discovery pro-
cess leading to affordable drugs. ML-based screening of 
approved drugs or investigational agents can also assist 
in repurposing of molecules with acceptable pharma-
cokinetics and safety profile [12]. The low cost of newly 
discovered antimalarials is an important criterion set by 
WHO given the prevalence of malaria in low-income 
Sub-Saharan countries [13].

In the past 10–15 years, several high throughput 
screening (HTS) campaigns have been carried out to 
identify antimalarial small molecules with new chemo-
types and novel modes of action [14–22]. This valuable 
data can be used to understand the antimalarial chemical 
space [23, 24] and build predictive models to screen for 
as-yet-unknown antimalarial chemotypes. For instance, 
Jamal et al. developed ML models for the prediction of 
molecules that inhibit the parasite’s apicoplast function 
leading to delayed death phenotype [25]. However, the 
authors used a highly imbalanced dataset of ~ 323 K com-
pounds deposited in PubChem for model building, out of 
which only ~ 22 K were classified as “actives”. Indeed, their 
best model based on random forest (RF) yielded an area 
under the Receiver operating characteristic (AUROC) 
curve of only 70%. Danishuddin et al. employed a data-
set of 4750 molecules obtained from the ChEMBL data-
base to develop predictive ML models of parasite killing 
activity against asexual blood-stages (ABS) using Support 
Vector Machine (SVM), k-nearest neighbours (k-NN), 
RF, and XGBoost [26]. The models were validated using 
an external dataset reported in PubChem, achieving an 
AUROC curve of approximately 85%. Mughal et al. devel-
oped a RF model to predict new molecules that could be 
active against parasite liver stages, without being cyto-
toxic to mammalian cells [27]; their training set consisted 
of 5972 compounds found to be active in an HTS study 
against Plasmodium berghei culture in human hepatoma 
HepG2 cells. Heerden et al. used HTS data to build SVM 
models for predicting individual or dual activity against 
ABS and sexual blood stages of P. falciparum [28]. Lastly, 
Bosc et al. created a large HTS dataset of antiplasmodial 

compounds obtained from different organizations and 
used this dataset to develop ML models [29–31]. Since 
a majority of the compounds were proprietary, a unique 
approach was adopted to develop a consensus model 
without sharing compound information: an ML model 
was built at each organization with proprietary datasets, 
following which a metamodel was generated using the 
weighted Morgan fingerprint (MFP) bits from individual 
models. The resulting Naïve Bayes (NB)-based MAlaria 
Inhibitor Prediction (MAIP) model was also experimen-
tally validated [31]. 

Most of the earlier reported ML models for antima-
larial activity are based on results from phenotypic HTS 
screening. This means that the compounds are tested at 
a single dose which only indicates whether a compound 
is active or inactive at that dose. This binary result does 
not reveal the compound’s potency or efficacy and there 
is high probability of compound being a false positive or 
false negative. Such data is expected to be detrimental 
for the accuracy of the model as per the garbage in, gar-
bage out principle. Moreover, the HTS datasets used in 
previous studies were small and unbalanced, which may 
have impacted model optimization and validation. To 
overcome these challenges, we decided to use input mol-
ecules that are evaluated at varying doses. A compound 
displaying a biological end-point in a dose-dependent 
manner is more reliable. A truly active molecule displays 
a typical dose-response curve from which IC50/EC50 val-
ues can be deducted which are constant under the given 
assay conditions. Fortunately, a large dataset of antiplas-
modial molecules with reported IC50/EC50 is available 
in ChEMBL database [32]. The latter is publicly available 
database which is updated regularly from the literature. 
Thus, to generate a reliable and robust ML model we 
selected a large and balanced dataset of antiplasmodial 
molecules tested at multiple doses against P. falciparum 
ABSs. The optimization of the model, its comparison 
with existing MAIP model, and experimental validation 
is also provided.

Results and discussion
Data curation and preprocessing
Our objective was to develop a classification model that 
could differentiate between “active” and “inactive” classes 
of compounds when tested in a typical phenotypic anti-
plasmodial assay. The robustness of any computational 
model is strongly related to the quality of input data. 
The more reliable the data used for training the model, 
the better the model’s performance. Therefore, for our 
model, we used a dataset of compounds with reported 
IC50/EC50 values, i.e., molecules that were tested at 
multiple doses and showed a dose-dependent parasite-
killing phenotype. We recently compiled such a dataset 
for the physicochemical profiling and chemical space 
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characterization of antimalarial compounds [23, 24]. 
Our dataset contains ~ 15,000 molecules tested against 
the ABS of malarial parasites and was curated from the 
ChEMBL database [32, 33], one of the largest databases 
of bioactive chemical compounds curated from reputed 
peer-reviewed medicinal chemistry literature.

Within our dataset, we defined “actives” as hav-
ing IC50 < 200 nM (N = 7039) and “inactives” as having 
IC50 > 5000 nM (N = 8079). Compounds with intermedi-
ate activity were not considered to have a clear demar-
cation between the two classes and noise-free input. 20% 
(N = 3024) of the total dataset (N = 15118) was kept aside 
as the external “test set” and was later used to evaluate 
the predictive performance of the final optimized model. 
The remaining set of molecules (N = 12094) were further 
partitioned into training (75%, N = 9070) and internal 
validation set (25% N = 3024). The latter was used during 
parameter optimization (Fig. 1).

Model development and hyperparameter optimization
Several ML algorithms such as Decision Tree (DT), Arti-
ficial Neural Network (ANN), SVM, k-NN, RF, and NB, 
are available for classification and regression modelling. 
Although ANN based modern methods are also popular 
for predictive modeling, these are often prone to overfit-
ting and computationally expensive. Also, ANN methods 
lack interpretability and considered as ‘black box’ models. 
Among these methods we selected RF technique owing 
to its higher speed and robustness against overfitting [34, 
35]. Also, RF has found several applications in medicinal 
chemistry in the past and consistently outcompetes other 
algorithms in terms of prediction accuracy and robust-
ness [35–41]. RF benefits from the ‘wisdom of the crowd’ 
effect as it is based on an ensemble of independent deci-
sion trees (DTs) which contribute to the overall predic-
tion. The RF algorithm involves the ‘bagging’ of data in 
which a random sample of the training set is selected for 
training individual DTs. The data sample is selected with 

replacement (bootstrapping), meaning that a data point 
may be part of more than one random sample [34, 35]. 
Thus, after each random sampling of the training set, 
typically one-third of the data points are left out which 
are referred to as out-of-bag (OOB) samples. During 
the individual tree construction, the OOB samples are 
used as the validation set since these are not used during 
model training. Consequently, the prediction accuracy of 
the OOB sets is an important internal cross-validation to 
assess an RF model. Another important aspect of RF is 
that it employs only a random subset of features or attri-
butes (independent variables such as descriptors, MFP 
bits, etc.) for training a tree which is typically the square 
root of the total number of features. This makes the RF 
algorithm much faster than DTs, especially when a large 
number of variables are used, since only a subset of attri-
butes is tested for their splitting performance at each 
node [35].

To build our model, we employed the Konstanz Infor-
mation Miner (KNIME) platform, a versatile, freely avail-
able data analytics platform [42–44]. In KNIME, nodes 
can be combined to develop a workflow to automate a 
variety of tasks including data curation, visualization, and 
machine learning modeling. Several open-source nodes 
are available to manipulate chemical structures and to 
calculate a variety of MFPs and chemical descriptors [45]. 
Since RDkit is the widely used open-source cheminfor-
matics software [46] we used it for MFP calculations in 
KNIME. Each MFP represents the chemical structures 
in different ways and have their own advantages and dis-
advantages [47]. Thus, the best performing MFP should 
be determined for a specific objective during model opti-
mization. Next, we used the ‘RF Learner’ and ‘RF Pre-
diction’ nodes available in KNIME to build a predictive 
model. Since the nature of MFPs might affect the model 
accuracy, we optimized the model to select the best-per-
forming MFP. The number of DTs to be learned (nT) and 
tree depth (Td, or number of levels) are important fac-
tors that may affect the overall performance of the RF 
model and the amount of computational time. Employing 
higher nT and Td values requires more time for model 
construction but may not lead to higher accuracy [35]. 
Therefore, the values for nT and Td hyperparameters 
need to be optimized during model optimization. Using 
the KNIME loop nodes, we varied the model nT and Td 
values between 50 and 400 and 10–50, respectively, and 
recorded model accuracy for each combination. Thus, 
we obtained optimized values for the hyperparameters 
for each MFP employing the training set (N = 9070) 
and internal validation set (N = 3024). Finally, the opti-
mized nT and Td values were used to evaluate the mod-
els against the external test set (N = 3024). The latter 
set of molecules was neither used for training nor for Fig. 1  Data curation and partitioning of the molecules into training, in-

ternal validation, and external test sets. As per the standard practice, the 
external test set is used only for the validation of the optimized model
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optimizing the model as per standard practice. The over-
all workflow is depicted in Fig. 2.

The results showed that most of the MFPs performed 
well displaying over 90% accuracy for the optimized 
models (RF-1-9) except for the atom pair MFP (Model 
9, Table 1). Among the top performers, models based on 
Avalon, (RF-1), Feature Morgan (Model 2), and Layered 
(Model 3) MFPs displayed very similar accuracies. How-
ever, Avalon FPs displayed the highest accuracy (91.7%), 
with the lowest optimized values of 150 and 50 for nT 
and Td, respectively. Thus, optimized RF-1 is found to 
be best in terms of overall accuracy and speed. However, 
accuracy alone can be misleading, and other metrics are 

prescribed for evaluating different aspects of the model 
depending on the objective. These metrics possess val-
ues between 0 and 1, with higher values representing the 
better-performing model. All these metrics can be calcu-
lated from the confusion matrix (Figure S1, Supplemen-
tary information file 1) that represents the number of 
true positives (TPs), true negatives (TNs), false positives 
(FPs), and false negatives (FNs).

The overall accuracy of a machine learning model 
represents the percentage of data points predicted cor-
rectly (TP + TN) by the model. Precision represents the 
quality of positive predictions by the model and refers to 
the proportion of TP cases (in this case active molecules 

Table 1  Optimized RF models based on different fingerprints and corresponding matrices for the external test set
Model MFP nT, Td Accuracy Precision Sensitivity

(recall)
Specificity MCC Cohen’s kappa F-measure AUROC

RF-1 Avalon 150, 50 0.917 0.935 0.884 0.946 0.834 0.833 0.908 0.973
RF-2 Feature Morgan 200, 50 0.916 0.951 0.864 0.961 0.833 0.830 0.905 0.971
RF-3 Layered 200, 20 0.915 0.934 0.879 0.946 0.829 0.828 0.906 0.969
RF-4 RDKit 350, 20 0.912 0.948 0.859 0.959 0.826 0.823 0.901 0.969
RF-5 Morgan 100, 50 0.911 0.951 0.853 0.962 0.824 0.820 0.899 0.970
RF- 6 Torsion 400, 40 0.909 0.941 0.859 0.953 0.819 0.816 0.898 0.969
RF-7 Pattern 250, 40 0.908 0.928 0.870 0.941 0.816 0.815 0.898 0.967
RF-8 MACCS 150, 30 0.905 0.912 0.881 0.926 0.809 0.809 0.896 0.963
RF-9 Atom Pair 250, 40 0.896 0.912 0.859 0.928 0.791 0.790 0.885 0.956

Fig. 2  Overview of the KNIME workflow employed for RF model development, optimization, and validation. The yellow box represents a node capable 
of carrying out a specific task. The grey boxes depict a metanode consisting of several nodes (yellow box) connected to perform multiple tasks. Each 
metanode is a group of more than one nodes contributing to the specific task of the metanode
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with IC50 < 200 nM) out of all predicted positive cases 
(TP + FP). The sensitivity (or recall) is the true positive 
rate (TPR) and is calculated as the proportion of TP cases 
of actual positive cases (TP + FN). The specificity is the 
proportion of actual negative cases (TN) that are cor-
rectly identified out of the total negative cases predicted 
by the model (TN + FP). In addition to the overall highest 
accuracy, RF-1 displays the highest values for sensitivity 
(0.884). One of the matrices for evaluating the balance 
between precision and sensitivity is the F1 measure or 
score. The latter is simply a harmonic means of preci-
sion and sensitivity. RF-1 displayed the highest F1-score 
(0.908) suggesting it to be a good predictor for both posi-
tive (active) as well as negative classes (inactive). The use 
of F1-score matric is relevant in this study as the test set 
is balanced, that is, molecules in both active (N = 1408) 
and inactive classes (N = 1616) are almost equal.

Cohen’s Kappa (κ) [48] represents the agreement 
between two raters, in this case, actual and predicted val-
ues by the model. The value of κ lies between − 1 to + 1, 
the more positive value represents the better predictive 
performance of the model in comparison to random clas-
sification. Among all, RF-1 showed the highest value for 
the κ (0.833) representing substantial agreement between 
the actual and the predicted values. Matthews correlation 
coefficient (MCC) is another metric for model evalua-
tion [49, 50] that shows advantages over F1 and accuracy, 
especially in the case of imbalanced data [51]. Again RF-1 
displayed the highest MCC (0.834) among all supporting 
its reliability and accuracy.

Another crucial criterion for evaluating a two-class 
classification model is the ROC curve. The ROC is a 
graphical plot between Sensitivity (TPR) and false posi-
tive rate (FPR or 1 –Specificity) at varying probability 
thresholds. Thus, the ROC curve extracts information 
from multiple confusion matrices by varying the thresh-
old to discriminate between the two classes (active vs. 
inactive). A two-class classifier model with no discrimi-
native power would show as a diagonal, that is, point (0.5, 
0.5) at all thresholds. In contrast, an ideal model is rep-
resented at a point (0,1), travelling from the bottom left 
to the top left and then across the top to the top right, 
thus displaying the maximum value for AUROC. The 
AUROC matrix can be used to compare different classi-
fier models’ predictive capacity. A completely ineffective 
2-class model will have AUROC of 0.5 (or 50%) proba-
bility while a perfect model will display a value of 1 (or 
100%) AUROC. RF-1 displayed the highest AUROC of 
0.973 (Fig. 3) suggesting it to be an excellent discrimina-
tor between the two classes and can be employed to pre-
dict novel antimalarial molecules.

Model validation
OOB accuracy
On average, during RF modeling, each tree is constructed 
using two-thirds of the rows in the training set and the 
remaining one-third of samples are predicted by the 
RF model. This constitutes an internal validation of the 
model yielding an OOB confusion matrix. Each row of 
the training set is predicted by the majority vote of all the 
other trees that did not use the row during their train-
ing. Therefore, OOB accuracy is different from the accu-
racy of the model observed for the test set and allows the 
training of a validated model. As expected, both OOB 
and test error rates tracked well [35] and displayed almost 
constant values after the usage of ~ 100 trees (Fig. 4). This 
agrees with the known fact that increasing the number 
of trees above the optimum value doesn’t improve model 
accuracy. Also, this observation is in congruence with the 
optimized nT value obtained after the parameter optimi-
zation using Avalon MFP (RF-1).

The accuracy and other matrices obtained from OOB 
confusion matrix (Table S1, Supplementary information 
file 1) are also close to the finally optimized RF-1 (Table 1) 
suggesting RF-1 to have high predictive performance.

10-fold cross-validation (CV)
We performed a 10-fold CV of RF-1 (nT = 150, Td = 50, 
Avalon MFP) employing the complete dataset (N = 12094) 
except for the external test set. This approach involves 
randomly dividing the dataset into 10 folds of equal size. 
Each time the model is trained with 9 folds, and the 10th 
fold is used as the validation set. Thus, a total of 10 mod-
els are trained and evaluated on the hold-out validation 
sets. The 10-fold CV was repeated ten times with a dif-
ferent random seed to ensure different combinations of 
the folds. The mean and standard deviations of accuracy 
and other evaluation matrices were found to be very sim-
ilar to each other in all repeats (Table 2) demonstrating 
the stability of RF-1. In addition, after multiple iterations 
average CV error rate is expected to converge to the OOB 
error rate [35] which was found to be true with RF-1. The 
other evaluation matrices from CV are almost identical 
to the values obtained for the test set further providing 
the evidence of robustness and predictive performance of 
RF-1.

Y-scrambling
Y-Scrambling (Target Shuffling or Y-Randomization) 
is a method to ensure that the predictions made by the 
model are not obtained by chance. In this approach, tar-
get column values of the test set are shuffled, and the 
trained model is used to compute the accuracy. If there 
is no true correlation between the target column and 
the attributes (or descriptors) then the predictions of 
Y-shuffled data will still be predicted accurately. Thus, for 
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a binary classification model values for the accuracy and 
other matrices should be close to 0.5 for the Y-shuffled 
test data set resembling the prediction by chance. Indeed, 
RF-1 displayed an accuracy of only 0.508 (Table 3) for the 
Y-scrambled test set, in contrast to 0.917 for the non-
shuffled test data. This confirms that RF-1 is not obtained 
by chance and the antiplasmodial activity of the mol-
ecules is indeed dependent on the MFP attributes used to 
develop and optimize the model.

Applicability domain (APD)
ML models are trained on finite datasets and may not 
generalize well to data far from the training set. For 
instance, the model developed using a set of small mol-
ecules cannot be used to predict the activity/properties 
of peptide like molecules. Such an application of ML 

Fig. 4  The variation of OOB and the external test set error rates show simi-
lar trends with the increasing number of trees. This validates the consis-
tency of models in calculating error rates for the training set and test set

 

Fig. 3  ROC curve obtained with RF-1. The diagonal represents a random classifier with 50% AUROC while RF-1 displays 97.3% AUROC for the external test 
set showing the high discriminatory power of the model for active and inactive antimalarial compounds
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model will be unreliable due to different chemical spaces 
of training and prediction set of molecules. Therefore, for 
all predictive models, an APD threshold is defined, and 
the distance of each test compound (or virtual screening 
set) is determined and compared to its nearest neighbour 
in the training set [52–54]. If the similarity is beyond the 
predefined APD threshold, the predictions are flagged as 
unreliable.

Many methods and their comparative studies are avail-
able in literature for defining APD thresholds [55–57]. 
For RF-1, we determined APD using the Euclidean dis-
tances between training and test molecules [54]. The 
1024-bit vector descriptor space obtained from the Ava-
lon MFPs was used to find out the Euclidean distances 
as a measure of similarity between all the pairs of train-
ing sets. For the test set only 12 out of 3024 (0.4%) of 
molecules were found to be predicted unreliably using 
the Avalon descriptors, suggesting test molecules to be 
within the applicability domain of the RF-1. In addition, 
principal component analysis (PCA) analysis of the train-
ing and test molecules was performed using the struc-
tural Skelsphere descriptors [58] available in Datawarrior. 
The molecules of both sets were found to be within the 
same boundaries of the PC1 and PC2 axis (Fig. 5) signify-
ing the chemical space similarity of the two sets.

Table 2  Results obtained from 10-fold CV repeated ten times
Seed Accuracy Precision Sensitivity

(Recall)
Specificity Cohen’s kappa F-measure AUROC

0 0.911 ± 0.008 0.938 ± 0.008 0.880 ± 0.016 0.949 ± 0.007 0.833 ± 0.017 0.908 ± 0.010 0.971 ± 0.005
1 0.915 ± 0.007 0.936 ± 0.012 0.877 ± 0.016 0.948 ± 0.011 0.828 ± 0.014 0.906 ± 0.008 0.971 ± 0.003
2 0.916 ± 0.010 0.936 ± 0.006 0.879 ± 0.023 0.948 ± 0.006 0.828 ± 0.014 0.907 ± 0.012 0.970 ± 0.004
3 0.912 ± 0.010 0.933 ± 0.016 0.879 ± 0.023 0.945 ± 0.014 0.823 ± 0.021 0.903 ± 0.011 0.970 ± 0.007
4 0.917 ± 0.007 0.937 ± 0.012 0.882 ± 0.010 0.948 ± 0.011 0.834 ± 0.014 0.909 ± 0.008 0.971 ± 0.003
5 0.917 ± 0.008 0.937 ± 0.014 0.881 ± 0.011 0.948 ± 0.013 0.833 ± 0.015 0.908 ± 0.008 0.970 ± 0.004
6 0.917 ± 0.008 0.936 ± 0.011 0.882 ± 0.019 0.947 ± 0.010 0.832 ± 0.017 0.908 ± 0.010 0.971 ± 0.004
7 0.916 ± 0.006 0.936 ± 0.008 0.880 ± 0.014 0.947 ± 0.008 0.830 ± 0.013 0.907 ± 0.007 0.970 ± 0.005
8 0.917 ± 0.006 0.937 ± 0.009 0.881 ± 0.011 0.948 ± 0.008 0.832 ± 0.011 0.908 ± 0.006 0.971 ± 0.003
9 0.914 ± 0.005 0.935 ± 0.006 0.877 ± 0.010 0.947 ± 0.005 0.827 ± 0.011 0.905 ± 0.006 0.971 ± 0.004

Table 3  Model performance matrices after Y-scrambling. The 
values after shuffling the data fall close to 0.5 suggesting a real 
correlation between the target class and attributes
Parameter Value
Accuracy 0.508
Sensitivity (recall) 0.444
Precision 0.470
Specificity 0.563
F-measure 0.456
AUROC 0.492

Fig. 5  The PCA analysis of (A) training and (B) test set molecules using the Skelsphere descriptor. The plots display that the training and test molecules 
occupy a similar chemical space and hence RF-1 can be used reliably to classify the test molecules
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Comparison of RF-1 with the MAIP platform
The performance of newly developed models is often 
compared with existing models. Such comparisons may 
show similarities and differences in terms of hit selec-
tion by the models. Previously, we have characterized 
property space of reported antimalarials [23, 24]. We also 
demonstrated that MAIP model selects hit molecules 
conforming to this space, thus providing indirect valida-
tion. In addition, MAIP is one of the most recent antima-
larial models and is based on a large and diverse dataset 
(> 6.5 million compounds). Therefore, we set to compare 
our model with MAIP especially in terms of the prop-
erty space of the hit molecules. Although MAIP model 
is based on the proprietary and undisclosed training set 
it is freely available as a web service platform [29, 31] 
enabling comparison with our model. The MAIP adopts 
a consensus approach where Naïve Bayes ML models 
developed by individual organizations on their datasets 
are combined to determine the final prediction of the 
antimalarial activity. However, unlike RF-1, the MAIP 
model is based on the HTS results and not the IC50 val-
ues. Consequently, the criteria for the classification of 
actives and inactive varies for MAIP and RF-1, the latter 
being based on IC50 values rather than percentage inhibi-
tion at a single dose.

We screened our external test set compounds 
(N = 3024) using the MAIP platform, which provided a 
model score for each compound rather than class pre-
diction. A higher MAIP model score signifies stronger 
chances of a compound being a true positive, i.e., active 
in cell-based antiplasmodial assays. Although the pre-
dictive performance of RF-1 and MAIP cannot be com-
pared directly, the MAIP model score was compared with 
the probability of class prediction obtained from RF-1. 
The MAIP model score displayed a positive correlation 
(r = 0.590) with RF-1 “active” class probabilities, suggest-
ing congruence between the two models (Fig. 6A). MAIP 
model score above 45, representing ~ 29% of the test set, 
showed significant enrichment with active molecules 
(Fig. 6B).

For further comparison, we screened a diverse set 
of ~ 10,000 commercially available compounds from 
Enamine vendor using MAIP and RF-1. As expected, the 
MAIP scores of 129 hits obtained from RF-1 were higher 
(average score ~ 30.0) than the remaining molecules 
(average score 19.6, Fig.  7A). The same library yielded 
128 hits with a significant MAIP model score (≥ 45). 
Interestingly, the hits predicted by MAIP and RF-1 did 
not overlap. Out of the 129 hits obtained by RF-1, only 
30 displayed Skelsphere similarity of 70% or higher to at 
least one of the MAIP model hits (Figure S2, Supplemen-
tary information file 1). Only nine molecules were found 
common to both hit lists (Figure S3, Supplementary 
information file 1) and are strong candidates for future 

experimental validation. Four of these molecules consist 
of quinolines and quinazolines rings, important antima-
larial pharmacophores [24, 59–61]. These chemotypes 
are still popular [23] for antimalarial drug design and are 
often recycled with novel substituents [62] against drug-
resistant parasites.

Earlier, we proposed an antimalarial property space 
after profiling a large dataset of research stage, clini-
cal candidates, and marketed antimalarials [23, 24]. We 
showed that, compared to other oral drugs, antimalarials 
possess higher molecular weight (MW), calculated par-
tition coefficient (clogP), basic nitrogen count (#BaN), 
and aromatic ring counts (#AR). In contrast, antimalari-
als have lower topological surface area (TPSA). Indeed, 
the hits obtained from phenotypic screens and the MAIP 
model adhere to this property space [24, 31]. In agree-
ment, the hits predicted by RF-1 also display significantly 
higher averages for #BaN, #AR, clogP, and MW, while a 
lower average for TPSA (Fig. 7B − 7 F; Table S2, Supple-
mentary information file 1).

Overall, these results suggest that both MAIP and RF-1 
provide hits that occupy the antimalarial property space. 
However, both models proposed different chemotypes 
as hits from a diverse library which may be due to the 
different size and different diversity of the training sets. 
Also, the model building approach and the definition of 
active and inactive molecules are different for both mod-
els. Therefore, we suggest that both models can be used 
in synergy for predicting novel antiplasmodial molecules.

Experimental validation with investigational agents
Repurposing of existing drugs that are proven to be safe 
and bioavailable is an important strategy in drug discov-
ery [12]. Extensive repurposing study of FDA-approved 
drugs for antimalarial discovery has been reported ear-
lier [63–66]. Therefore, for repurposing studies with our 
ML model, we focused on the compounds being investi-
gated in clinical trials. To this end, we obtained a library 
of investigational compounds from Drugbank database 
[67]. Metallic, inorganic, and gaseous molecules were 
removed and the library was filtered to keep compounds 
with molecular weight between the range of 200–900 Da 
to fit into the antimalarial property space [23, 24]. The 
resulting set of 3308 investigational compounds were 
screened using RF-1, out of which 153 hits were pre-
dicted to be active within the applicability domain of the 
model. For the sake of novelty, compounds with high 
similarity (≥ 0.8) with the training and test members were 
eliminated to limit the hit list to 94 compounds. Finally, 
based on diversity, commercial availability, and cost, we 
purchased six molecules for antiplasmodial screening 
(Table S3; Supplementary information file 1).

The molecules were tested in vitro for anti-plasmodial 
activity in the SYBR green I assays, which is a standard 
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assay used to evaluate the parasite growth inhibition [68]. 
The SYBR green assay has high throughput and therefore 
it is commonly used as a preliminary screen in antima-
larial drug discovery [69]. The compounds were initially 
screened at 1 µM and 10 µM concentrations together 
with chloroquine (CQ) and WR99210 controls (Figure 
S4, Supplementary information file 1). Out of the six 
compounds, 1 (CEP-37440) and 2 (AZD-1480), exhibited 
promising antiplasmodial activity at the selected concen-
trations. Subsequently, IC50 was determined to be 1.22 
µM and 4.00 µM for compounds 1 and 2, respectively 

(Fig. 8; Table 4). Notably, all hits except compound 5, also 
received MAIP score higher than the average score of 
56.32. Specifically, compounds 1 and 2 received the high-
est (101.68) and third-highest (76.16) scores among the 
six compounds, showing agreement between RF-1 and 
MAIP.

Interestingly, both hit compounds (1 and 2) are human 
kinase inhibitors and have 2,4-diamino-5-chloropy-
rimidine chemotype. Compound 1 is a dual inhibitor of 
anaplastic lymphoma kinase (Alk) and focal adhesion 
kinase (Fak) and currently being evaluated in phase 1 

Fig. 6  The comparison of the MAIP model and RF-1 against the external test set. The true active molecules are rendered as green circles while true inac-
tive ones as red circles. A) correlation of MAIP model score and probability values of active class obtained from RF-1. B) The distribution of the MAIP model 
score for the external test molecules. The true active molecules are also assigned a higher score by the MAIP model suggesting the agreement between 
the two models
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Fig. 8  The dose response curves for compounds 1 (blue curve) and 2 (red curve)

 

Fig. 7  The box plots comparing average values for A) MAIP model score, B) #BaN, C) #AR, D) MW, E) clogP, and F) TPSA, of the predicted active and inac-
tive compounds from the Enamine diversity library. The molecules predicted to be active by RF-1 also show higher MAIP score, on average. The active 
molecules also conform to antimalarial property space
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clinical trials for antineoplastic activity. Compound 2 is 
the Janus-associated kinase 2 (JAK2) inhibitor, and it has 
been studied in phase 1 trials for the treatment of essen-
tial thrombocythaemia myelofibrosis, solid malignan-
cies, post-polycythaemia vera, and primary myelofibrosis 
(Table S3, Supplementary information file 1). To investi-
gate whether the homologue proteins are present in Plas-
modium genome we performed the BLAST search using 
sequences of Alk (Uniprot ID Q9UM73), Fak (Uniprot 

ID Q05397), and JAK2 (Uniprot ID O60674). The search 
reveals the presence of several known and putative 
related kinases in different species of Plasmodium cor-
responding to Alk, Fak, and JAK2. The representative 
examples of the protein sequences from P. falciparum 
are shown in supplementary information (Figure S12, 
Supplementary information file 1). These findings sug-
gest that the Plasmodium indeed has homologues of Alk, 
Fak, and JAK2 human targets and these parasite proteins 

Table 4  Structures, antiplasmodial activity, β-hematin inhibition activity, and physicochemical properties (predicted by Datawarrior 
[58]) of the purchased investigational compounds

aThe values represent Mean ± SD from two biological replicates, each having three technical replicates
bThe values represent Mean ± SD from three independent experiments, each having three replicates

IN = inactive; NT = Not tested
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provide opportunity for the design of novel antimalarial 
drug design. For instance, protein structures of the malar-
ial homologues can be predicted and can be employed for 
structure-based design for the identification of new hits. 
It is highly plausible that compounds 1 and 2 might be 
targeting these Plasmodium kinases and therefore, these 
hits can be further optimized using the modeling studies. 
Indeed, several Plasmodium kinases play important roles 
at distinct stages of the malaria parasite life cycle and 
have been validated for antimalarial drug discovery [70–
72]. Many case studies also demonstrate that it is possible 
to achieve human vs. Plasmodium selectivity while opti-
mizing kinase inhibitors with potent in vitro and in vivo 
antimalarial activity [70, 73–76], which could be explored 
with these compounds.

In both hit molecules, substituents at position 2 and 
4 of the chloropyrimidine ring are quite different and 
hence, these are considered diverse when evaluated 
by the Skelsphere descriptors. Searches in ChEMBL 
revealed that molecules similar (≥ 0.8) to 1 and 2 are 
reported in medicinal chemistry literature, but none 
have been evaluated against P. falciparum. Nonetheless, 
2,4-diamino-pyrimidines with distinct substituents have 
been reported to possess antiplasmodial activity [18, 77, 
78].

Four BaN centers are predicted in compound 1 as 
opposed to three BaNs in compound 2. Moreover, com-
pound 1 is expected to be more basic than compound 2 

owing to the presence of piperazine ring bearing two ter-
tiary amines that are absent in compound 2. Also, com-
pound 1 is significantly bulky (MW 580.13 Da) and more 
lipophilic (clogP 4.278) than compound 2 (MW 348.77; 
clogP 1.376). These, property differences are in line with 
the proposed antimalarial property space and suggest 
the possibility of hemozoin synthesis inhibition by 1 and 
2 [23, 24]. Therefore, we screened all molecules, except 
3 and 6 (due to insufficient quantity), in the β-hematin 
inhibition assay (BHIA) which is a commonly used sur-
rogate of the Hz synthesis (Table 4; Fig. 9). Interestingly, 
compound 1 displayed inhibition in BHIA equipotent 
to the positive control amodiaquine (AQ) and ~ 4.4-fold 
potent than CQ. This observation suggests that Hz syn-
thesis might be one of the targets of compound 1. In 
contrast, compound 2 was observed to be ~ 10-fold and 
~ 2.4-fold less potent than AQ and CQ, respectively, sug-
gesting it to be a weak inhibitor of Hz synthesis. Com-
pound 4 exhibited high IC50 in BHIA in accordance with 
its inactivity against the parasite. However, compound 5 
was found to be the most potent inhibitor of β-hematin 
synthesis with IC50 8.18 µM. The poor parasiticidal 
activity of compound 5 suggests that it might be unable 
to accumulate in DV of the parasite. Also, compound 5 
is considerably small (MW 262.36) and less lipophilic 
(clogP 0.455) than 1 which doesn’t align with the ideal 
antimalarial property space. Particularly, the low lipo-
philicity might hinder compound 5 to access the Hz that 

Fig. 9  The dose response curves for the β-hematin formation inhibition of positive controls (amodiaquine and chloroquine) and the purchased 
compounds
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grows at the lipid-water interface within the parasite’s 
DV.

Comparison with artificial neural network (ANN) 
model
Further, we compared RF-1 with the modern ANN mod-
els, which are increasingly being applied in drug dis-
covery [79–83]. In ANN, neurons represent basic units 
that are organized into several layers with specific roles. 
Thus, an interconnected network of input, hidden, and 
output layers is organized to build the ANN model. The 
input layer is the first layer to which features of the data-
set are fed in numerical form. The hidden layers perform 
computations, adding weights and non-linear activation 
functions to the input numbers to achieve the desirable 
output during training. The output from one hidden 
layer may act as the input for the next hidden layer, thus 
increasing the complexity or ‘deepness’ of the model. The 
output layer produces the final prediction based on its 
own set of weights.

We employed a simple multi-layer perceptron (MLP) 
model for benchmarking. For training and validation of 
MLP, the same set of molecules and MFPs (Avalon) were 
used as in the case of RF-1. It is known that one to two 
hidden layers are sufficient for most of the predictive 
tasks [84, 85]. Also, it is proposed that the number of 
neurons in the hidden layer should be between the num-
ber of neurons in the input and the output layers [84], 
which is 1024 (MFP bits) and 2 (two classes), respectively, 
in this case. Hence, we initially employed a single hidden 
layer and varied the neuron numbers (25 to 250) and α 
values (0.1, 0.01, and 0.001). The MLP-8 model with a 

neuron size of 100 and alpha value of 0.001 was found to 
be optimum with 90.3% accuracy for the validation test 
set (Table  5). The neuron size higher than 100 resulted 
in slightly poor performance by the single-layer model. 
Further increasing the hidden layer size to two did not 
improve the accuracy (Table S4, Supplementary informa-
tion file 1) hence, we used MLP-8 for further compari-
son. Ten-fold cross-validation demonstrated MLP-8 to 
be stable with reproducible values for accuracy and other 
parameters (Table S5, Supplementary information file 1).

For the prediction of the external test set MLP-8 was 
found to be slightly less accurate than RF-1 (90.2% vs. 
91.7%, Table 6). In addition, RF-1 performed equally well 
in terms of recall rates (88.4% vs. 88.9%) and slightly bet-
ter in terms of precision (93.5% vs. 89.8%) and F-score 
(90.8% vs. 89.4%) (Table 6). Also, RF-1 was found to yield 
a higher value for AUROC (Fig. 10) compared to MLP-8 
(97.3% vs. 95.7%).

Overall, RF-1 seems to perform better than the MLP 
model for the used antiplasmodial datasets. Nevertheless, 
the difference between the two models is marginal, and 
further tuning and optimization of MLP might improve 
its performance.

Conclusion
This work reports the training and validation of a robust 
RF model generated from a large, refined set of antima-
larial molecules deposited in public repository ChEMBL. 
As opposed to the previously reported ML models 
which rely on HTS screening and/or proprietary data, 
RF-1 is based on the more dependable multi-dose activ-
ity. Among various tested MFPs, Avalon MFP yielded 
a model with the highest accuracy requiring the lowest 
number for trees and tree depth. The model was vali-
dated and evaluated through a variety of matrices and 
found to have high predictive performance for an exter-
nal test set. The high accuracy, sensitivity, specificity, and 
AUROC of RF-1 ensures that it can be reliably used to 
distinguish between active and inactive antimalarial mol-
ecules. Thus, RF-1 can be employed for high throughput 
virtual screening (HTVS) using large chemical libraries 
making it possible to explore a wider chemical space. The 
molecules can be prioritized for experimental screening, 
reducing the time and cost involved in early drug dis-
covery phase. This is particularly important in the case 

Table 5  MLP models with a single hidden layer with varying 
neuron numbers

Neuron numbers Alpha Accuracy
(validation test set)

MLP-1 25 0.01 0.886
MLP-2 25 0.001 0.890
MLP-3 25 0.0001 0.891
MLP-4 50 0.01 0.876
MLP-5 50 0.001 0.896
MLP-6 50 0.0001 0.889
MLP-7 100 0.01 0.898
MLP-8 100 0.001 0.903
MLP-9 100 0.0001 0.901
MLP-10 150 0.01 0.897
MLP-11 150 0.001 0.891
MLP-12 150 0.0001 0.899
MLP-13 200 0.01 0.902
MLP-14 200 0.001 0.887
MLP-15 200 0.0001 0.898
MLP-16 250 0.01 0.899
MLP-17 250 0.001 0.888
MLP-18 250 0.0001 0.899

Table 6  The comparison of prediction performance of models 
MLP-8 and RF-1 for the external test set
Evaluation metric MLP-8 RF-1
Accuracy 0.902 0.917
Precision 0.898 0.935
Recall 0.889 0.884
F measure 0.894 0.908
AUROC 0.957 0.973
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of antimalarial drug discovery since most of the affected 
population reside in low- and mid-income countries.

RF-1 was also found to be comparable to a recently 
reported MAIP SVM model in terms of the property 
space of the hits. Nonetheless, the hits predicted by RF-1 
and MAIP from a common commercial library do not 
overlap reflecting different training sets and algorithms 
used to develop these models. Experimental validation of 
RF-1 was carried out by repurposing study with investi-
gational agents. Two human kinase inhibitors (1 and 2) in 
clinical trials predicted to be active by RF-1 were found 
to possess low micromolar antiplasmodial and β-hematin 
inhibition activity. Thus, these hits represent excellent 
starting points for developing antimalarials for targeting 
both, the corresponding parasite kinases, and β-hematin. 
Such dual targeting antimalarials are expected to be less 
susceptible to resistance development by the parasite.

One major limitation of the work is that the dataset of 
antimalarials is obtained from ChEMBL which collects 
molecules from a selected set of medicinal chemistry 
journals. This limited dataset might not represent the 
complete structural diversity of antimalarials, thus affect-
ing the accuracy and applicability of the model. In future, 
the training data can be updated from other sources to 
further improve the size and chemical diversity that 
might result in a model with a wider APD.

Overall, the RF model disclosed in this manuscript is a 
useful tool for identifying new antimalarial compounds. 
Given the complementarity of RF-1 with MAIP both can 
be used in consensus to select hits through HTVS. One 
important aspect of this study is the use of open-source 
data and KNIME workflow enabling usage by medicinal 
chemists with no coding expertise. This workflow can be 
used to generate models applicable to other targets since 
the basic steps of model building and validation remain 
the same. Importantly, this KNIME workflow can also be 
modified by replacing RF with other ML algorithms such 
as SVM, k-NN, NB, and XGBoost.

Experimental
Data curation and model building
Detailed methodology for the data collection is reported 
in our earlier works [23, 24]. Briefly, ChEMBL [32, 33]
(version 30) was searched within the Osiris Datawar-
rior program (v 5.50) [58] for molecules tested against 
P. falciparum. The small molecules within MW ≤ 900 Da 
with reported IC50/EC50 values were retained. The dupli-
cate molecules were merged resulting in a total of 15,118 
molecules. The average of IC50 values of the merged mol-
ecules was considered for defining the active (IC50 ≤ 200 
nM) and inactive categories (IC50 ≥ 5000 nM).

KNIME software (v 5.1) [42–44] was used for devel-
oping the ML workflow using inbuilt and RDKit [46] 

Fig. 10  ROC curve obtained with MLP-8. The diagonal represents a random classifier with 50% AUROC
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community nodes. The molecules were standardized 
using the ‘RDkit from molecule’ converter node fol-
lowed by the generation of different MFPs (1024 bits) 
using the ‘RDKit Fingerprint’ node. The MFP bit vectors 
were then split into individual integer columns using the 
‘Expand Bit Vector’ node. 20% of the dataset was split 
into the external test set (N = 3024; Supplementary infor-
mation file 4) used to evaluate the final model employing 
the stratified sampling. The remaining molecules were 
further split into training (75%, N = 9070; Supplemen-
tary information file 2) and internal validation set (25%, 
N = 3024; Supplementary information file 3). The lat-
ter was used to validate the hyperparameters of the ‘RF 
Learner’ node. During optimization, nT varied from 50 to 
400 while Td varied between 10 and 50, with the step size 
of 50 and 10, respectively. All the possible combinations 
of the nT and Td values were tested using the ‘brute force’ 
setting in the ‘Parameter Optimization Loop’ node. The 
training set data was fed to the ‘RF Learner’ node which 
utilizes the Classification And Regression Trees (CART) 
algorithm [86]. During RF model building the individual 
trees are constructed with mtry descriptors rather than 
the total number of p descriptors. In KNIME ‘RF Learner’ 
node, the mtry value is fixed to the square root of p which 
is shown to perform well [35]. The MFP expanded 1024-
bit columns (e.g. Avalon) were selected as the attributes 
while the target class was set to the column with class 
description (active/inactive) for each training set mol-
ecule. The ‘Information Gain’ split criteria was employed 
for individual tree construction.

Thus, models were generated using the training set 
(N = 9070) using different MFPs and the values of nT and Td 
were optimized to obtain maximum accuracy for the inter-
nal validation set (N = 3024). The optimized models were 
finally evaluated for their predictive performance using the 
external test set (N = 3024). Various performance matrices 
were calculated using the ‘Scorer’ and ‘ROC curve’ nodes of 
KNIME. The confusion matrix and equations for calculat-
ing various performance matrices are provided in Figure S1 
with Supplementary information file 1.

The applicability domain (APD) [52–54] of RF-1 was cal-
culated using the ‘Domain similarity’ node from Enalos [87]. 
The distance of a test compound to its nearest neighbour in 
the training set was compared to the predefined applicabil-
ity domain (APD) threshold. The process involves the calcu-
lation of average Euclidean distances (d) between all pairs of 
compounds in the training set and the corresponding stan-
dard deviation (σ). The APD threshold was then determined 
using the equation APD = ‘d’ + Zσ, where Z is an empiri-
cal cutoff of 0.5 [54]. Any molecule in the test set with APD 
higher than the APD threshold was considered to have an 
unreliable prediction.

The final Knime workflow is provided in the supple-
mentary information (Supplementary information file 5).

Testing antiplasmodial activity of select compounds using 
SYBR green assays
All investigational compounds were purchased from 
MedChemExpress (MCE®) in sufficient purity (> 98%). 
The characterization data was obtained from the vendor 
and is provided in Supplementary information file 1 (Fig-
ure S5 -S11). The 3D7 strain of P. falciparum was a kind 
gift from MR4, BEI Resources (NIAID, USA). ABS of 
3D7 were grown in O + blood in RPMI complete medium 
using established protocols [88]. SYBR green-based 
ring stage killing assays were performed as previously 
described [68, 89]. 

BHIA screening
The β-hematin inhibition activity of selected compounds 
was performed by applying the previously reported 
detergent-mediated NP-40 assay [90, 91]. The clini-
cally used antimalarial drugs AQ (purity > 98%, Cat. No. 
A3133, TCI), and CQ (purity > 98%, Cat. No. C6628, 
Sigma-Aldrich) were taken as positive controls. The stock 
solution of 20 mM concentration was prepared for all 
the drugs in DMSO except for CQ which was dissolved 
in water. Further dilutions for all drugs were made using 
NP-40/water (61.1 mM). The stock solution of hematin 
was prepared by sonicating hemin chloride in DMSO. 
Subsequently, the stock solution of hemin chloride was 
suspended in 1  M acetate buffer (PH 4.8) followed by 
vortex. The drug (50 µL) and suspended hemin chlo-
ride solution (48 µL) were added to the 96 well plate 
and incubated at ambient temperature (37 oC) for 6  h. 
The assay was analysed using the pyridine-ferrochrome 
method developed by Ncokazi and Egan. The pyridine 
solution (PH 7.4) was prepared by combining 50% (v/v) 
pyridine, 30% (v/v) water, and 20% (v/v) acetone and 
2  M 4-(2hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES). 32 µL of this solution was added to each well 
followed by 60 µL of acetone to assist the hematin dis-
persion. The absorbance of the plate was taken at 405 nm 
using Biotech Epoch Microplate Reader. The IC50 of each 
compound was calculated by plotting sigmoidal dose-
response curves in GraphPad Prism v 8.0.0. (GraphPad 
Software Inc., La Jolla, CA, USA).

MLP modeling
The MLP models were built using scikit-learn (v 1.5.0), 
a Python (3.11.9) based library. The training dataset 
was made of a matrix of size 9070 × 1024, where each 
row represents a single distinct molecule, and the col-
umns represent their respective Avalon fingerprints as 
X (variable). The activity class (Active: 1, Inactive: 0) was 
represented by Y-label. Similarly, the two validation data-
sets (both internal and external) were of a matrix size of 
3024 × 1024. Multiple MLP models were trained based 
on the range of hyperparameters provided using the 
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training set (Table 5). The trained models were tested for 
their performance on internal validation and were ranked 
based on their accuracy parameter. The optimized model 
(MLP-8) was further evaluated against the external test 
dataset. The complete Python code used to develop the 
MLP models can be accessed at Github ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​
m​/​s​h​a​r​m​a​-​l​a​k​s​h​y​a​/​M​L​P​_​m​o​d​e​l​_​c​o​m​p​a​r​i​s​o​n​​​​​)​.​​
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