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Abstract
The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents 
a significant analytical challenge, as only a single reported method exists for its determination, deviating from 
eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning 
techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and 
OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate 
(MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical 
ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality 
standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration 
set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels 
of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic 
implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, 
resolving the limitations of reported chemometric methods’ random data splitting. This approach ensures 
unbiased evaluation across the full concentration space, improving the method’s reliability and sustainability. The 
robustness of this approach was rigorously tested using five distinct chemometric models: principal component 
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Introduction
The pharmaceutical industry faces an increasing demand 
for sustainable, cost-effective, and eco-friendly analytical 
practices [1–4]. The recent approval of the nasal spray 
combination of mometasone (MOM) and olopatadine 
(OLO) has presented an important analytical prob-
lem. To date, only a single reported method exists for 
its quantification [5], that departs from the guidelines 
of sustainability, white analytical chemistry (WAC)  and 
green analytical chemistry (GAC)  [5–7]. This method 
relies on toxic solvents, complex multi-step processes, 
costly instrumentation, and extensive infrastructure. 
These unsustainable practices jeopardize the environ-
ment, human health, and economic viability, highlighting 
the need for novel analytical approaches that incorporate 
emerging sustainability-driven disciplines [8, 9].

Ultraviolet-visible (UV) spectrophotometry is a viable 
option that aligns with the sustainability objectives of 
analytical chemistry. It utilizes affordable reagents and 
fundamental instrumentation, including light sources 
and cuvettes, while producing negligible hazardous waste 
[10]. However, significant spectrum overlaps frequently 
impede the direct measurement of medications [11]. This 
challenge can be addressed by strategically applying che-
mometric techniques, transforming UV spectroscopy 
into an effective and eco-friendly analytical approach 
suitable for sustainable and efficient pharmaceutical 
quality control processes [12, 13].

A prevalent limitation in up-to-date chemometrics 
studies is the routine use of random splitting to divide 
data into sets for validation and calibration [14]. While 
simple to implement, using this method could result in 
validation sets that don’t accurately reflect the whole 
sample, which could introduce bias or unrealistic model 
accuracy expectations. To resolve this matter, our study 
employs the Kennard Stone Clustering (KSC) Algorithm, 
a powerful statistical technique, to systematically gener-
ate well-balanced validation sets [15]. The KSC approach 
partitions the feature space that was modelled into sepa-
rate clusters, guaranteeing that validation samples fully 
capture the range and each variable’s distribution. This 

approach promotes analytical sustainability by reducing 
resource usage and waste production while enhancing 
reliability with less but strategically allocated validation 
samples.

The assessment and control of genotoxic impuri-
ties (GTIs) in pharmaceutical products have acquired 
significant attention because they have the capacity to 
cause genetic alterations and raise the risk of cancer [16, 
17]. Amongst the impurities linked to MOM and OLO, 
4-dimethylamino pyridine (DAP) and methyl para-tol-
uene sulfonate (MTS) (Fig.  1) are especially troubling 
examples of GTIs [18, 19]. Even at trace amounts, their 
presence can harm DNA, leading to mutations and chro-
mosomal aberrations. The genotoxicity of MTS and DAP 
underscores the requirement for sensitive, rapid, and 
economical analytical methods to accurately quantify and 
monitor these impurities in MOM and OLO products, 
ensuring patient safety. Notably, a substantial gap in qual-
ity control standards is highlighted by the fact that no 
analytical approach for the concurrent determination of 
OLO, MOM, and these crucial GTIs has been described.

This study aims to address all previous critical gaps in 
pharmaceutical analysis through three interconnected 
objectives. Firstly, we develop the first chemometric 
approach for the concurrent quantification of MOM 
and OLO, and their genotoxic impurities MTS and DAP 
without separation. Secondly, we implement the KSC for 
the first time to create robust validation sets, enhanc-
ing model reliability across all concentration ranges. 
Thirdly, we prove the method’s sustainability, agreement 
with GAC and WAC basic concepts, and superiority 
over the reported method using six cutting-edge tools. 
These include the National Environmental Method Index 
(NEMI), complementary Green Analytical Procedure 
Index (Complex GAPI), Analytical Greenness Metric 
(AGREE), Blue Applicability Grade Index (BAGI) and 
Red-Green-Blue 12 (RGB12) metrics, and carbon foot-
print assessment.  Overall, this comprehensive approach 
aims to pioneer a paradigm shift in pharmaceutical anal-
ysis, promoting sustainable, efficient, and economically 
viable quality control practices.

regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate 
curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. 
All models successfully determined all components with excellent recovery, low bias-corrected prediction, and 
adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used 
to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-
of-the-art tools, including the national environmental method index, complementary green analytical procedure 
index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 
12 metrics. Favorable results across all metrics affirmed the method’s eco-friendliness, real-world applicability, and 
cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes.

Keywords Mometasone and olopatadine, Machine learning models, Kennard stone clustering algorithm, Greenness 
whiteness and blueness evaluation, Solvents selection tool and spider charts
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Experimental
Analytical instruments and software tools
Dataset were attained utilizing a high-precision dual-
beam UV-Vis spectrophotometer UV-1800  (Shimadzu 
Corporation, Kyoto, Japan) outfitted with 1  cm quartz 
cells. Measurements were taken utilizing UV-Probe soft-
ware (version 2.42, Shimadzu Corporation). The instru-
ment settings were set as follows: A 0.1 nm sampling 
interval, a 1.0 nm slit width, and fast mode with one 
scan. Shimadzu AGE-220 analytical balance (Shimadzu 
Corporation, Kyoto, Japan) for precise weighing. Julabo 
ultrasonic bath (Julabo Labortechnik GmbH, Seelbach, 
Germany) for sample extraction.

MATLAB R2013a (version 8.2.0.701, MathWorks, 
Natick, MA, USA) was utilized for data processing and 
chemometric analysis, in addition to PLS Toolbox ver-
sion 2.0, designed by Eigenvector Research (Wenatchee, 
WA, USA) and the freely accessible toolbox of MCR-ALS 
(http://www.mcrals.info). The KSC method was executed 
utilizing custom MATLAB R2013a scripts, incorporat-
ing improved statistical algorithms. SDAGI and One-way 
analysis of variance (ANOVA) were carried out by using 
Microsoft Excel (Microsoft Corporation, Redmond, WA, 
USA). The GSST was employed using the free calculator 
algorithm available at  h t t p  : / /  g r e e  n -  s o l  v e n  t - t o  o l  . h e r o k u a p 
p . c o m /.

Reagents and materials
Ultrapure water (18.2 MΩ·cm at 25  °C) was acquired 
from a Milli-Q water purification system (Millipore, 
Bedford, MA, USA). MOM (99.30% purity) and OLO 
(99.78% purity) were obtained from Glenmark Pharma-
ceuticals Egypt (Cairo, Egypt). MTS (99.60% purity) and 
DAP (99.52% purity) were acquired from Sigma-Aldrich 

Co. (St. Louis, MO, USA). Hexane, acetonitrile, ethanol, 
methanol, ethyl acetate, and chloroform were sourced 
from Merck KGaA (Darmstadt, Germany). Ryaltris® nasal 
spray (batch no: PL25258-0331, Glenmark Pharmaceuti-
cals, Egypt) containing 665 µg OLO and 25 µg MOM per 
metered dose was acquired from a local pharmacy.

Preparation of standard solutions
Individual stock solutions of OLO, MOM, DAP, and MTS 
were formulated at 100 μg/mL each. For each compound, 
10 mg of the reference standard was accurately weighed 
utilizing the analytical balance and was then transferred 
thoroughly to a 100 mL volumetric flask. The standards 
were dissolved in HPLC-grade ethanol with the aid of 
sonication for 5  min to ensure complete dissolution. 
Using the same solvent, the volume was brought up to the 
corresponding mark and mixed thoroughly. Daily prepa-
ration of working standard solutions was performed by 
diluting the stock solutions with ethanol to obtain the 
planned concentration ranges for analysis. All dilutions 
were performed using Class A volumetric glassware or 
calibrated micropipettes to ensure accuracy.

Spectral properties and linearity
The UV absorption spectra of MOM, OLA, MPS, and 
DAP were separately measured within the 200–400 nm 
wavelength range, as shown in (Fig. 2). The concentration 
ranges for MOM, OLA, MPS, and DAP were 1–7, 6.5–
86.5, 0.5–4.5, and 1–5 µg/mL, respectively. These ranges 
were deliberately selected to cover the instrument’s lin-
ear dynamic range and to reflect the drug formulations’ 
concentrations.

Experimental design
An organized design of experiment is essential for 
acquiring optimal results and information-rich spectral 

Fig. 2 The zero-order absorption spectrum MOM, OLO, MTS, and DAP

 

Fig. 1 The chemical structure of MOM, OLO, MTS, and DAP

 

http://www.mcrals.info
http://green-solvent-tool.herokuapp.com/
http://green-solvent-tool.herokuapp.com/
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data and in accordance with the plan provided by Brere-
ton et al. [20], we created a calibration set with multiple 
levels and factors, composed of 25-different mixtures. 
Concentration ranges stated for each analyte in the cali-
bration set were 1–7, 6.5–86.5, 0.5–4.5, and 1–5 µg/mL 
for MOM, OLA, MPS, and DAP, respectively. To con-
struct a reliable validation set that consistently assesses 
the model’s performance across the entire concentra-
tion space, we used the KSC algorithm. This approach 
resulted in 13-validation mixtures, each selected from 
one of 13 strata with equal probability, covering the 
entire range of concentration. The validation and cali-
bration designs align with GAC and WAC principles, as 
they are simple, highly sensitive, highly selective, easy 
to use, economically efficient, use minimal solvent, save 
time, and are environmentally friendly. Mixtures were 
prepared using calibrated micropipettes and HPLC-grade 
ethanol as the solvent in 25 mL Class A volumetric flasks. 
Absorption spectra were measured utilizing 1 cm quartz 
cuvettes within the wavelength range of 200–400  nm, 
with ethanol as the blank. After careful evaluation, we 
excluded lower and higher spectral ranges due to high 
levels of noise or insufficient signal. The resulting spectral 
data matrix extended from 210 to 320 nm with a resolu-
tion of 1 nm, resulting in 111 wavelength data points for 
each spectrum. To ensure data quality and reproducibil-
ity, each mixture was prepared in triplicate and analyzed 
three times. The spectra were averaged for subsequent 
analysis. We also implemented a randomization strategy 
for sample preparation and measurement to minimize 
systematic errors.

Models development and optimization
For model construction, 5 chemometric techniques were 
applied, including classical least squares (CLS), principal 
component regression (PCR), partial least squares (PLS), 
multivariate curve resolution-alternating least squares 
(MCR-ALS), and PLS combined with genetic algorithm-
based wavelength selection (GA-PLS). Each model was 
rigorously optimized using the 25-mixture calibration set 
to prevent overfitting and ensure robustness. In the CLS 
model, regression calculations were performed indepen-
dently at each wavelength, employing a moving window 
method for wavelength selection. Window widths rang-
ing from 5 to 30 nm were evaluated through cross-valida-
tion, and the most suitable width was determined based 
on the balance between noise reduction and information 
retention. For both PCR and PLS models, the count of 
Latent Variables (LVs) was incrementally varied from 1 
to 10, with the optimal value identified through Venetian 
blinds cross-validation, utilizing the Root Mean Squared 
Error of Cross-Validation (RMSECV) as the selection cri-
terion, seeking a balance between complexity and model 
fit. In the GA-PLS model, the parameters of the Genetic 

Algorithm were optimized to identify the most relevant 
spectral regions,  focusing on balancing accuracy, reli-
ability, and generalizability, with selected wavelengths fed 
into the PLS model for final calibration. The MCR-ALS 
model employed non-negativity constraints for the spec-
tral and concentration profiles, using a non-negative least 
squares (nnls) algorithm, with constraints optimized to 
achieve satisfactory results with minimal iterations.

Analytical performance parameters
Comprehensively evaluated utilizing a range of ana-
lytical metrics to assess their predictive effectiveness, 
accuracy, precision, robustness, and sensitivity [21]. For 
the calibration set, we calculated the standard error of 
calibration (SEC), root mean square error of calibration 
(RMSEC), and RMSECV to gauge the model’s fitting and 
predictive capabilities. The performance of the validation 
set was quantified utilizing the relative root mean square 
error of prediction (RRMSEP), while the model’s ability 
to generalize effectively was assessed via the root mean 
square error of prediction (RMSEP). Furthermore, we 
utilized the bias-corrected mean square error of predic-
tion (BCRMSEP) to evaluate the predictability and preci-
sion of novel samples.

The subsequent formulas were employed to calculate 
these metrics [21]:

 
RMSE =

√∑ n
i=1(yi − ŷi)2

n

 
Bias =

∑ n
i=1(yi − ŷi)

n

 
SEC =

√∑ n
i=1(yi − ŷi − bias)2

n − 1

 
RRMSEP % =

1
n

√∑ n
i=1(yi − ŷi )2

−
y i

× 100

 
BCRMSEP =

∑ n
i=1(yi − ŷi)2

n
− (bias)2

In this equation, the variable yi denotes the outcome 
of the experiment, ŷi represents the predicted value, n 

represents the samples’ number, and 
−
yi represents the 

experimental values’ mean.

For assessment of accuracy, we conducted an analysis 
of three separate concentration points that fell within the 
linear range specified for each analyte in triplicate: MOM 
(2.5, 4, and 5.5  µg/mL), OLO (26.5, 46.5, and 66.5  µg/
mL), MTS (1.5, 2.5, and 3.5 µg/mL), and DAP (2, 3, and 
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4  µg/mL). Recovery percentages (%R) were calculated 
for each concentration. Precision was evaluated through 
repeatability (intra-day) and intermediate (inter-day) 
precision studies. We analyzed three different samples 
in triplicate on the same day for repeatability, and on 
three different days for intermediate precision, using the 
same concentration levels as in the accuracy study. Pre-
cision was represented as a percentage relative standard 
deviation (%RSD). The method’s robustness was tested by 
introducing small, deliberate variations in experimental 
parameters: spectral bandwidths (1 nm versus 0.8 nm slit 
width), wavelength intervals (1 nm compared to 0.9 nm), 
and scan speeds (fast versus medium). The limit of quan-
tification (LOQ) and limit of detection (LOD) were com-
puted depending on the standard error of the regression 
curve, which was plotted using the experimentally deter-
mined concentrations (expressed on the y-axis) against 
the predicted concentrations by the models (expressed 
on the x-axis), applying the IUPAC-recommended Eqs. 
[17, 22]:

 LOD = 3.3 /S

 LOQ = 10 /S

Where S represents the slope, which reflects the sensi-
tivity of the method to variations in concentration, while 
σ denotes the standard error of the prediction-versus-
actual regression, which measures the variability of the 
predicted values.

Analysis of pharmaceutical dosage forms
The proposed method was applied to the analysis of 
Ryaltris® nasal spray labeled to consist of 665 µg of OLO 
and 25 µg of MOM per mL. A 50 mL aliquot of the nasal 
spray was accurately transferred to a 100 mL volumetric 
flask, to which about 30 mL of HPLC-grade ethanol was 
placed. The mixture was sonicated for 15 min to ensure 
complete drug extraction, cooled to room temperature, 
and diluted to volume with ethanol to acquire concen-
trations of 12.5  µg/mL MOM and 332.5  µg/mL OLO. 
This stock solution was then passed through a 0.45  μm 
PTFE membrane filter,  with the initial few milliliters of 
the filtrate discarded. An appropriate aliquot of the fil-
tered stock solution was subsequently diluted with etha-
nol. The spectra of the resulting solutions were recorded 
between 200 and 400 nm, using ethanol as the reference 
blank. The developed chemometric models were applied 
to the acquired spectra to ascertain the concentrations of 
OLO and MOM. The accuracy was assessed by introduc-
ing spiked standards in triplicate at four different con-
centration levels. RSD% and R% were then computed. 
Ultimately, the outcomes generated by the suggested 
chemometric techniques were statistically compared to 

those from the validated reference method using one-
way analysis of variance (ANOVA), ensuring a com-
prehensive evaluation of the method’s performance in 
quantifying MOM and OLO in the presence of potential 
matrix effects from the pharmaceutical formulation and 
demonstrating its applicability for routine quality control 
analysis.

Results and discussion
In this research, we have effectively designed and vali-
dated novel chemometric approaches for the concurrent 
quantification of MOM and OLO, along with the geno-
toxic contaminants MTS and DAP, utilizing UV-visible 
spectrophotometry.  Five different chemometric models 
were meticulously tested, demonstrating the robustness 
of the innovative KSC validation method and its broad 
applicability across these diverse modeling techniques, 
as well as the superior integrity of the multivariate con-
centration domain represented by the experimental data. 
Thorough validation verified the precision, accuracy, and 
sensitivity of the proposed approach. Adhering to the 
concepts of GAC and WAC, a thorough evaluation of the 
method’s greenness, whiteness, and blueness was under-
taken utilizing six state-of-the-art methods: Complex 
GAPI, NEMI, AGREE, carbon footprint analysis, RGB12, 
and BAGI. The advantageous outcomes across all metrics 
affirmed the method’s eco-friendliness, real-world appli-
cability, and cost-effectiveness. Furthermore, the selec-
tion of environmentally friendly solvents using the GSST 
and SDAGI contributed significantly to the method’s 
overall sustainability. This holistic approach to method 
development not only addresses the analytical challenges 
posed by the MOM-OLO nasal spray combination but 
also aligns with broader sustainable development goals in 
pharmaceutical quality control processes.

Green solvent selection
Green solvent selection tool (GSST)
The concept of a “green solvent” is complex, but it gen-
erally refers to solvents with minimal health risks, 
greater safety profiles, and minimal effect on the envi-
ronment over their lifecycle. In pursuit of sustainability, 
major pharmaceutical companies such as Pfizer, Sanofi, 
and GlaxoSmithKline (GSK) have developed standards 
for choosing suitable green solvents. The GSK Solvent 
Sustainability Guidelines, in particular, provide com-
prehensive solvent sustainability guides that compare 
the advantages and disadvantages of different solvents 
based on information from their Safety Data Sheets 
(SDSs). Building on these guidelines, Christian Lars-
en’s research introduced a novel chemometric tool for 
green and sustainable solvent selection [23]. This tool 
calculates a Greenness score (G) using the equation: 
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G = 4
√(H × S × E × W), where H, S, E, and W represent 

Health, Safety, Environment, and Waste Disposal factors, 
respectively. The G score ranges from 1 to 10, with bet-
ter scores signifying more sustainability and greenness. 
We applied this tool to evaluate seven polar solvents: 
ethanol, acetonitrile, ethyl acetate, water, methanol, hex-
ane, and chloroform. The findings indicated that ethanol, 
methanol, water, acetonitrile, and ethyl acetate attained 
markedly greater G scores in contrast to the more harm-
ful solvents, such as chloroform and hexane (Fig. S1). 
Particularly, acetonitrile, water, ethyl acetate, ethanol, 
and methanol attained G scores of 7.3, 6.7, 6.6, 5.8, and 
5.8, respectively, reflecting positive assessments in safety, 
health impacts, environmental impact, and disposal of 
waste. Based on these greenness assessments,  Aceto-
nitrile, water, ethyl acetate, ethanol, and methanol were 
chosen for further evaluation due to their superior envi-
ronmental compatibility. This selection aligns with our 
objective to develop an analytical technique that follows 
the guidelines of green chemistry by using safer and more 
environmentally benign chemicals.

Spider diagram for assessment of the greenness index 
(SDAGI)
Despite tools like the GSST facilitating initial solvent 
selection, a more thorough assessment of reagent green-
ness depending on comprehensive experimental data is 
essential. The SDAGI tool offers a valuable qualitative 
method for this purpose, utilizing SDS data [24, 25]. This 
technique leverages Safety, Health, and Environmental 
(SHE) data on reagent effects and properties to compute 
greenness scores based on important parameters and 
produce visual spider diagrams. As shown in (Fig. S1), the 
SDAGI hierarchical spider chart shows points from -5 to 
+5, which are obtained from 5 evaluation subcategories: 
general properties, health impact, fire safety, odour, and 
stability.  This visual representation simplifies the pro-
cess of evaluating and comparing reagents.  To examine 
SDS data for the solvents we had previously chosen, we 
used SDAGI. The findings showed that ethanol and ethyl 
acetate had greater overall greenness evaluates (1.33 and 
1.44, respectively) and bigger safety areas. At the same 
time, methanol and acetonitrile showed lower scores of 
-0.12 and − 0.30, as detailed in (Table S1). Based on these 
findings, we narrowed our selection to water, ethyl ace-
tate, and ethanol as the most eco-friendly solvents for 
further evaluation. To determine the most appropriate 
green solvent for our specific analytical needs, we exam-
ined the UV spectra of MOM, OLA, MPS, and DAP in 
these three solvents. Our spectral analysis disclosed that 
ethanol offered a better UV response and better spec-
tral shape for all four compounds in contrast to water 
and ethyl acetate. This enhanced analytical performance, 
combined with ethanol’s favorable environmental profile, 

led us to conclude that ethanol is the primarily appro-
priate green solvent for additional studies incorporating 
MOM, OLA, MPS, and DAP.

Chemometric models
The complex spectral overlapping of MOM, OLA, MPS, 
and DAP in their UV absorption spectra, as shown in 
(Fig. 2), required the use of powerful chemometric solu-
tions in order to achieve precise quantification. The 
acquisition of concentration data hidden within the intri-
cate spectrum patterns was made possible by chemomet-
ric modelling  [26–28]. Using ternary mixtures’ whole 
spectrum data obtained between 200 and 400 nm, we 
created multivariate calibration models. A critical aspect 
of accurate modeling was reducing noise and artefacts 
while identifying useful spectral regions. The ideal spec-
tral range, recorded at 1 nm intervals, was found to be 
210–320 nm through an iterative tuning procedure that 
was guided by noise levels, undesired signals, and model 
performance indicators. This resulted in 111 data points 
that formed the input matrix for our chemometric analy-
ses. This optimized data set was then used to construct 
and refine five distinct chemometric models using MAT-
LAB including PCR, CLS, PLS, GA-PLS, and MCR-ALS 
models. Each of these models offers unique advantages 
in handling spectral data. CLS provides a straightfor-
ward approach based on Beer’s Law but can be sensitive 
to spectral interferences. PCR reduces data dimensional-
ity and can handle collinearity effectively. PLS balances 
the information in both spectral and concentration data, 
often leading to robust predictions. GA-PLS incorpo-
rates evolutionary algorithms to optimize wavelength 
selection, potentially improving model performance. 
MCR-ALS offers the ability to resolve pure component 
spectra and concentration profiles, providing additional 
insights into the mixture composition. By employing this 
diverse array of chemometric techniques, we aimed to 
comprehensively evaluate the spectral data and ensure 
robust quantification of all four compounds despite their 
spectral similarities. This approach not only addresses 
the immediate analytical challenge but also provides a 
comparative framework for assessing the strengths of 
different chemometric methodologies in complex phar-
maceutical analyses.

Calibration set design
The calibration set was constructed employing a mul-
tifactorial, multilevel experimental strategy, following 
the methodology outlined by Brereton et al. [20]. This 
method was applied in order to produce a set of 25 cali-
bration mixtures, ensuring comprehensive coverage of 
the concentration range for all analytes. The concentra-
tion levels for each analyte were strategically selected at 
five points: -2, -1, 0 (center point), + 1, and + 2, as detailed 
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in (Table  1). This design allows for the exploration of 
both main effects and potential interactions between 
analytes while minimizing collinearity in the calibration 
matrix. This design offers several advantages includ-
ing efficient coverage of the experimental domain with 
a rather small number of mixtures, the ability to model 
non-linear responses, reduced risk of overfitting due to 
the structured nature of the design, and the decrease of 

the reagent consumption and waste generation which 
aligns well with the principles of GAC.

Validation set design
To rigorously assess the predictive performance of our 
chemometric models, a validation set encompassing the 
complete range of concentration of the calibration pro-
cess was essential. To overcome the deficiencies of basic 
random sampling, which may result in inadequate cov-
erage and skewed accuracy assessments, we employed 
the KSC algorithm for validation set selection. The KSC 
algorithm was applied utilizing MATLAB with custom 
scripts. This approach strategically divides the multivari-
ate concentration space into unique clusters, guarantee-
ing thorough coverage of all analyte concentration ranges 
and their combinatorial distributions. Key aspects of the 
KSC-based validation set design include implementing 
a structured classification approach to segment multi-
component concentration data into well-defined clus-
ters spanning multiple dimensions,  selection of a single 
validation sample from each stratum, equivalent to a 
concentration regime that is equally likely to occur, and 
generation of a very informative yet concise thirteen-mix-
ture validation set, as shown in (Table 1). The effective-
ness of the KSC approach in achieving uniform coverage 
of the concentration space is illustrated in (Fig. 3) which 
shows scatter plots of the validation samples through the 
range of analyte concentrations. Unlike ordinary random 
sampling, the KSC approach gave thorough representa-
tion of the concentration range with fewer samples com-
pared to random sampling, mitigation of potential biases 
arising from uneven sample distribution, enhanced effi-
ciency in material usage, agreement with GAC guiding 
principles, and robust evaluation of model performance 
across diverse sample compositions. Furthermore, the 
use of a statistically optimized validation set contributes 
to the overall sustainability of the method by reducing 
reagent consumption and waste generation, while main-
taining high standards of analytical rigor. The successful 
application of KSC in this study demonstrates its poten-
tial as a valuable tool for enhancing the reliability and 
efficiency of chemometric method validation in compli-
cated pharmaceutical analyses.

CLS model
It is alternatively called K-matrix calibration [29] and was 
employed as an initial step in our analytical process. The 
Beer-Lambert law, which asserts a direct proportional-
ity between analyte concentration and absorbance over 
several wavelengths, and multivariate linear regression 
serve as the foundation for this technique. In our study, 
we constructed a calibration matrix using spectral data 
as predictors and known concentrations of the analytes 
(MOM, OLA, MPS, and DAP) as response variables. 

Table 1 Experimental design of 25 calibration mixtures 
formulated using a five-level, five-factor approach, and 
an additional 13 validation mixtures generated by KSC for 
chemometric models’ validation
Mix no Calibration set (µg/mL)

MOM OLO MTS DAP
1. 4 46.5 2.5 3
2. 4 6.5 0.5 5
3. 1 6.5 4.5 2
4. 1 86.5 1.5 5
5. 7 26.5 4.5 3
6. 2.5 86.5 2.5 2
7. 7 46.5 1.5 2
8. 4 26.5 1.5 4
9. 2.5 26.5 3.5 5
10. 2.5 66.5 4.5 4
11. 5.5 86.5 3.5 3
12. 7 66.5 2.5 5
13. 5.5 46.5 4.5 5
14. 4 86.5 4.5 1
15. 7 86.5 0.5 4
16. 7 6.5 3.5 1
17. 1 66.5 0.5 3
18. 5.5 6.5 2.5 4
19. 1 46.5 3.5 4
20. 4 66.5 3.5 2
21. 5.5 66.5 1.5 1
22. 5.5 26.5 0.5 2
23. 2.5 6.5 1.5 3
24. 1 26.5 2.5 1
25. 2.5 46.5 0.5 1
Mix no Validation set (µg/mL)

MOM OLO MTS DAP
1. 7 29 4 4.5
2. 3 19 3 4
3. 3 48 2 3
4. 6 76 3 4.5
5. 3 85 3.5 2
6. 4 75 3 2.5
7. 5 18 2 1
8. 2 86 2 1
9. 4 41 1 4.5
10. 2 55 4 3
11. 2 8 1 4
12. 1 72 4 3.5
13. 6 33 1 2
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This design ensured that the number of variables (wave-
lengths) was appropriately managed to allow for a fully 
multivariate analysis.

Mathematically, this is expressed as: 

 A = KC + E

where 𝐴 is the matrix of absorbance spectra, 𝐾 is the 
matrix of pure component spectra (K-matrix), 𝐶 is 
the concentration matrix, and 𝐸 is the residual matrix 
accounting for errors or deviations from linearity.

Initially, our predictions using the CLS model were 
suboptimal, likely due to baseline shifts or other sys-
tematic deviations from ideal linearity. To address this, 
we incorporated an intercept term into the regression 
model, which significantly improved predictive accuracy, 
leading to %R of 99.75%, 100.24%, 100.51%, and 99.48% 
for MOM, OLA, MPS, and DAP, respectively. While 
these results were promising, we recognize that CLS has 
inherent obstacles, particularly in managing non-linear-
ity and inter-component interactions, which are common 
challenges in complex multi-component systems. Despite 
providing a solid starting point and performing well with 
our dataset, the CLS model was ultimately outperformed 
by more advanced chemometric techniques that could 
better accommodate the complexities of our analysis.

PCR model
To address the limitations of CLS, we next implemented 
the PCR model, which integrates Principal Component 
Analysis (PCA) with Multiple Linear Regression (MLR) 
[30–32]. This method effectively reduces data dimen-
sionality while still maintaining much of the spectral 
fluctuation, making it particularly useful for complex 
multi-component systems where collinearity among 
spectral variables may be an issue. Our PCR model devel-
opment process began with PCA performed on spectral 
data to obtain Principal Components (PCs). Next, we 
used cross-validation to determine the ideal number of 
LVs. The calibration set’s mean-centered spectra were 
used to construct the PCR model, employing leave-one-
out cross-validation. RMSECV was calculated after each 
LV addition to assess model performance. Ultimately, 
we found that optimal performance was achieved with 
four LVs for modeling MOM, OLA, MPS, and DAP, as 
depicted in (Fig.  4). The RMSECV values were 1.1023, 
0.9276, 0.16164, and 0.0993 for MOM, OLA, MPS, 
and DAP, respectively. The PCR model demonstrated 
improved performance over CLS, effectively handling 
spectral noise and interference while maintaining good 
predictive accuracy.

PLS model
In our study, we implemented the PLS model, a powerful 
chemometric model that integrates aspects of regression 

Fig. 3 Two-dimensional scatter plot illustrating the validation set relationships: (a) MOM versus DAP, (b) MOM versus MTS, (c) MOM versus OLO, OLO 
versus MTS, OLO versus DAP, and MTS versus DAP designed by KSC design as optimal-space filling design
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modeling and PCA. In contrast to PCR, which maxi-
mizes spectral variance, PLS is designed to enhance the 
relationship between spectral information (independent 
variables) and concentration levels (dependent variables), 
emphasizing on retaining variables that are directly asso-
ciated with the prediction of concentration [14]. We 
chose to construct separate PLS models for each of the 
four analytes, MOM, OLA, MPS, and DAP, rather than 
a single multivariate model. This decision was based on 
the distinct spectral properties and concentration ranges 
of each analyte, which necessitated a tailored modeling 
approach. By developing individualized models, we were 
able to fine-tune the selection of LVs specific to each ana-
lyte through leave-one-out cross-validation, optimizing 
the predictive accuracy for each component. The optimal 
performance for each analyte was achieved using four 
LVs, as demonstrated in (Fig. 4), with RMSECV values of 
0.7111, 0.3657, 0.1364, and 0.0823 for MOM, OLA, MPS, 
and DAP, respectively. These results indicate improved 
predictive capability compared to the PCR model; a com-
mon outcome given PLS’s ability to retain concentration-
dependent variables more effectively. While constructing 
individual models required additional computational 
effort, this approach provided a more nuanced under-
standing of the spectral-concentration relationship for 
each analyte. It also minimized the potential issues asso-
ciated with multicollinearity and noise that could arise in 
a more generalized, multi-component model. Overall, the 

use of separate PLS models for each analyte aligned with 
our goal of achieving precise and accurate quantification 
in this complex pharmaceutical analysis.

GA-PLS model
To further enhance our analytical approach, we devel-
oped a GA-PLS model. This advanced technique uses GA 
to optimize and refine the PLS models by judicious selec-
tion of the primarily relevant wavelengths extracted from 
the dataset. GA replicate biological evolution through 
mechanisms such as selection, recombination, and muta-
tion to determine the most suitable set of parameters 
that enhance the accuracy of predictions [14]. The pri-
mary advancement in this method was the removal of 
unnecessary spectral wavelengths with low analyte sig-
nal, achieved through the GA enhancement algorithm. 
To ensure statistical robustness in variable selection, we 
fine-tuned GA parameters such as convergence crite-
ria, population size, and mutation rate (Table 2). Several 
iterative GA operates resulted in the reduction of absor-
bance matrices for MOM, OLA, MPS, and DAP by 60%, 
41%, 53%, and 45%, respectively, keeping only the vari-
ables that are most pertinent to measuring each compo-
nent. The GA-PLS models were then rebuilt using this 
optimized matrix. Cross-validation found that four LVs 
were optimally sufficient for the GA-PLS model to rep-
resent MOM, OLA, MPS, and DAP, yielding RMSECV 

Fig. 4 RMSECV plot of the calibration set as a function of the optimum LVs for the (a) PCR, (b) PLS, and (c) GA-PLS models
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values of 0.3111, 0.1987, 0.0996, and 0.0772, respectively, 
as illustrated in (Fig. 4).

MCR-ALS model
The final chemometric technique employed in our study 
was the MCR-ALS model. This sophisticated technique 
seeks to identify the unique spectral and concentration 
characteristics of each component in an intricate mix-
ture, even in the absence of prior information about the 
system. MCR-ALS operates by decomposing the data 
matrix with the help of a bilinear model, initially estimat-
ing the substances that are present, and then processing 
concentration and spectral profiles via the iterative ALS 
procedure, while adhering to certain constraints [33, 34]. 
In our implementation, the MCR-ALS analysis was ini-
tially performed by conducting an evolving factor analy-
sis, setting a log eigenvalue threshold of -4, which led to 
the identification of a three-factor model. Non-negativity 
constraints were applied to both the concentration and 
spectral profiles, while correlation constraints were also 
incorporated for the concentration profiles [35]. The 
iterative process reached a steady state after fifteen itera-
tions, meeting the predetermined convergence criterion 
of 20%. The model demonstrated excellent performance, 
achieving a variance percentage (r2) of 100 and a remark-
ably low fitting error (lack of fit %) of 0.0057. Figure  5 
shows the individual spectral records that were resolved 
using the MCR-ALS model, which display a notable 

resemblance to the previously measured absorption 
spectra. This alignment between resolved and measured 
spectra not only validates the model’s accuracy but also 
highlights its potential for qualitative component detec-
tion alongside quantitative determination. The dual func-
tionality of the MCR-ALS model, precise quantification 
coupled with qualitative elucidation, sets it apart as a ver-
satile and comprehensive analytical tool.

KSC algorithm
Theoretical background of the Kennard-Stone algorithm
The Kennard-Stone algorithm, a cornerstone in chemo-
metric analysis, was introduced by R.W. Kennard and 
L.A. Stone in 1969 [36]. This algorithm is created to 
choose representative samples from a dataset in an opti-
mal manner, ensuring comprehensive coverage of the 
feature space. Its primary goal is to enhance the selec-
tion process of calibration samples, thereby improving 
the robustness and accuracy of subsequent analytical 
models. The algorithm operates by iteratively selecting 
data points that maximize the minimum distance to the 
samples already chosen. This selection process guaran-
tees that the chosen samples are diverse and span the 
entire feature space, leading to a more representative and 
unbiased calibration set. The Kennard-Stone algorithm’s 
effectiveness in maintaining the integrity of the dataset’s 
variability makes it a valuable tool in various applica-
tions within analytical chemistry, particularly in method 
development and validation. By ensuring that the calibra-
tion samples are uniformly distributed across the feature 
space, the Kennard-Stone algorithm enhances the predic-
tive performance and generalizability of analytical mod-
els. This method’s ability to systematically address the 
representativeness of sample selection underscores its 
importance in achieving reliable and reproducible ana-
lytical results.

Kennard-stone algorithm for clustering
The Kennard-Stone algorithm offers a robust theoretical 
basis for clustering by selecting representative samples 
that maximize the minimum distance between them, 
ensuring a diverse and well-distributed sample set as 
shown in (Fig. 6). This selection process can be adapted 
for clustering by viewing the representative samples as 
cluster centroids. Each new sample added to the set fur-
ther refines these centroids, enhancing the diversity and 
representativeness of the clusters. This property makes 
it suitable for creating clusters that are well-distributed 
across the variable space, ensuring the representation of 
all significant variations in the dataset.

The new KSC algorithm proceeds as follows:

Table 2 Parameter adjustments optimized for the genetic 
algorithm used in variable selection
Parameters Optimum values

MOM OLO MTS DAP
Size of the population 44 48 36 44
Highest number of 
generations

51 73 65 60

Rate of mutation 0.005 0.005 0.005 0.005
Percentage of wave-
length utilized at the 
initiation

15 15 15 15

Variable count within 
a defined window 
(window width)

2 2 2 2

Proportion of the 
population reaching 
convergence

80 80 80 80

Cross-type Double Double Double Double
Maximum number of 
latent variables

4 4 4 4

Cross-validation Random Random Random Random
Number of subsets 
to divide data into for 
cross-validation

5 5 5 5

Iterations per 
generation in 
cross-validation

2 2 2 2
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  • Initialization: Begin with an empty set of selected 
points, S= {}. Calculate the pairwise distances 
between all points in the dataset X.

  • Selection of the First Point: Choose the first point 
that is furthest from the mean of the dataset and add 
this point to S.

  • Iterative Selection: For each subsequent point, 
calculate its distance to all points already in S. Select 
the point that maximizes the minimum distance 
to the points in S and add this point to S. Repeat 
this process until the desired number of clusters is 
reached.

  • Cluster Formation: Finally, assign each point in 
the dataset to the nearest centroid based on the 
Euclidean distance.

  • Repeat steps 3 and 4 until the desired number of 
samples (or clusters) is reached.

We applied the KSC to our dataset of 25 calibration 
mixtures. The algorithm was used to select 13 mixtures 
for the validation set, ensuring these samples were well-
distributed across the concentration ranges of all four 
analytes (MOM, OLA, MTS, and DAP). This approach 
resulted in validation samples that effectively represent 
the entire calibration space, enhancing the robustness of 
our chemometric models.

Comparison with traditional clustering methods
Traditional methods, such as K-means or hierarchical 
clustering, depend on the initial random selection of cen-
troids followed by iterative refinement. In contrast, the 
KSC algorithm systematically selects centroids based on 
distance criteria, ensuring that the clusters are diverse 
and representative from the outset ensuring a more uni-
form distribution of samples across the variable space. 
This is particularly advantageous in analytical chemistry, 
where capturing the full range of variability is crucial for 

Fig. 5 Absorption spectra and resolved spectra estimated by MCR-ALS algorithm
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developing robust models. While k-means and hierarchi-
cal clustering aim to minimize within-cluster variance, 
they may not always select boundary points that are criti-
cal for defining the limits of the calibration space. The 
Kennard-Stone algorithm, by selecting maximally distant 
points, inherently includes these boundary cases, leading 
to a more comprehensive representation of the dataset. 
In our study, applying KSC ensured comprehensive cov-
erage of the analytical feature space, leading to more reli-
able and reproducible quantification methods.

Validation of the chemometric methods
Our proposed chemometric models’ validation was car-
ried out through a rigorous evaluation process with the 
help of an external validation set consisting of thirteen 
combinations produced by KSC. These validation mix-
tures, while independent of the model development 
process, had concentration levels within the calibration 
range (Table 1), ensuring a comprehensive and unbiased 
assessment of model performance. We evaluated the 
models depending on several key metrics, offering a mul-
tifaceted view of their predictive capabilities. All mod-
els show excellent accuracy, with recovery rates ranging 
from 98 to 102% for all analytes (Table 3), indicating high 
reliability in quantitative determinations. The RMSEP, a 
crucial indicator of model accuracy, showed minimal val-
ues across all models, with the MCR-ALS model exhib-
iting better performance. It achieved RMSEP of 0.00944, 
0.42262, 0.01933, and 0.00397 for MOM, OLA, MPS, 
and DAP, respectively (Table  3). Additionally, we calcu-
lated the RRMSEP, which represents prediction accu-
racy as a percentage of mean analyte concentration. The 

MCR-ALS model again showed particularly favorable 
results, with RRMSEP values of 0.25568%, 0.85179%, 
0.75014%, and 0.1306% for MOM, OLA, MPS, and DAP 
respectively, as shown in (Table S2). To further assess the 
models’ precision, we examined the BCMSEP. All models 
demonstrated low BCMSEP values, showing a high level 
of precision in predictions across all components (Table 
S2). In addition to these metrics, we assessed the overall 
fit of the models by plotting true concentrations versus 
estimated ones for all analytes. These plots yielded high 
coefficients of determination (r²) across the board, dem-
onstrating excellent linearity and predictive performance. 
The strong linear relationships are visually confirmed in 
(Fig. S2 to Fig. S5), where all plots exhibit good r² val-
ues, further validating the accuracy of our models. We 
also evaluated the sensitivity of our models by calculat-
ing LOD and LOQ from net analyte signals, confirming 
their suitability for quality control analysis. The models 
exhibited outstanding reproducibility, with intra-day and 
inter-day assessments showing relative standard devia-
tion (%RSD) values less than 2% (Table S2), demonstrat-
ing their precision and robustness under repeated testing 
conditions. These comprehensive validation results col-
lectively demonstrate the high accuracy, precision, and 
robustness of our models, particularly the MCR-ALS 
approach, for the concurrently quantification of MOM, 
OLA, MPS, and DAP in complex pharmaceutical formu-
lations. The consistent performance across various vali-
dation metrics suggests that these models are well-suited 
for routine quality control applications in pharmaceuti-
cal analysis, offering reliable and sensitive quantification 

Fig. 6 Flowchart of KSC algorithm steps
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of both active substances as well as possible genotoxic 
impurities.

Statistical analysis
To assess the efficiency of the proposed models, the 
ANOVA was conducted on the validation data. From the 
findings, it was determined that there were no statisti-
cally significant changes in accuracy amongst the differ-
ent models (p > 0.05). The F-values that were calculated 
were considerably lower than the critical one, further 
confirming the comparable accuracy of these models 
(Table S3). Additionally, a comparative analysis between 
the suggested chemometric methods and the previously 
reported method [5] for the quantification of MOM and 
OLO demonstrated equivalent performance, as demon-
strated by the data that was introduced in (Table S3).

Pharmaceuticals assay
The proposed method was effectively used to the analy-
sis of Ryaltris® nasal spray, demonstrating no significant 
interference from excipients. To validate the accuracy 
of the proposed approaches in real pharmaceutical for-
mulations, the standard addition method was used. The 
findings, summarized in (Table 4), confirm the method’s 
reliability and applicability for routine quality control 
analysis of the combination product.

Comparative study
A comprehensive comparison of the five chemometric 
models was conducted to evaluate their performance in 
quantifying the target analytes. The results, summarized 
in (Table S2), demonstrate successful model construc-
tion for all methods, with MCR-ALS exhibiting better 
overall performance. The CLS model, while effective, 
is constrained by its requirement for thorough under-
standing of every component of the calibration sample, 
potentially limiting its accuracy and applicability in com-
plicated matrices. In contrast, PCR and PLS models offer 
greater flexibility, as they operate on the assumption of a 
linear relationship between response variables and spec-
tral data. This approach eliminates the need for exhaus-
tive component information, allowing for the resolve of 
key analytes even in the presence of unknown matrix 
elements. PLS demonstrated various benefits over PCR, 
encompassing improved handling of collinear variables, 
additional efficient utilization of spectral data, enhanced 
management of non-linear relationships, increased 
robustness to noise, and superior predictive power. Nota-
bly, the incorporation of GA data further enhanced PLS 
model performance, with GA-PLS models outperforming 
those constructed utilizing raw data. This improvement 
is attributed to the optimized predictive and resolution 
capabilities achieved through the selection of fewer, more 
relevant data points and variables. MCR-ALS emerged as Ta
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the top-performing model, showcasing superior results 
across all evaluation metrics. Its exceptional performance 
can be attributed to its capacity to use iterative learn-
ing to understand system behavior and dynamic data 
analysis under varied conditions. This approach enables 
a thorough knowledge of the system’s complexity in 
both mathematics and chemistry. Furthermore, MCR-
ALS successfully resolved the authentic spectra of each 
component, offering the additional benefit of qualitative 
impurity identification. This capability extends to the 
potential retrieval of qualitative data regarding unknown 
interferences, if present. In summary, while all models 
demonstrated satisfactory performance, the MCR-ALS 
approach offers the most robust and versatile solution for 
the concurrently quantification of MOM, OLO, and their 
impurities in the nasal spray formulation.

Comprehensive sustainability assessment
The evaluation of analytical methods’ environmental and 
economic impacts is crucial for understanding their over-
all sustainability. Sustainability in analytical chemistry 
encompasses multiple facets, including environmental 
friendliness, waste reduction, safety, efficiency, and cost-
efficacy [37]. Given the complexity of these interrelated 
factors, a single assessment tool is insufficient to provide 
a thorough evaluation of an analytical method’s sustain-
ability profile [38–40]. Therefore, this research utilized a 
multi-tool methodology to conduct a comprehensive sus-
tainability assessment, considering various complemen-
tary perspectives.

NEMI tool
Despite the fact that tools such as GSST and SDAGI 
aid in selecting greener reagents, evaluating the whole 
method’s environmental impact is crucial. NEMI offers a 
straightforward, efficient visual evaluation of a method’s 
greenness depending on key parameters such as corro-
siveness,  toxicity, and waste generation [41]. The NEMI 
tool utilizes a four-quadrant pictogram (Fig. S6) to rep-
resent critical environmental criteria. A method is con-
sidered green if it meets the following requirements: 
(1) None of the chemicals used are categorized by the 
EPA’s Toxic Release Inventory (TRI) as persistent, bio-
accumulative, and toxic (PBT). (2) No chemicals are 

listed as hazardous waste under the Resource Conser-
vation and Recovery Act (RCRA) U, P, F, D, or TRI lists. 
(3) The method’s pH falls between 2 and 12, which is a 
non-corrosive range. (4) The total waste generated is less 
than 50 g. NEMI pictograms were generated for both the 
reported and proposed methods, as shown in (Table 5). 
A comparison of these pictograms reveals that the pro-
posed method is significantly greener, with all four quad-
rants colored green, indicating compliance with all NEMI 
requirements. The chemicals used in the suggested 
method were not classified as hazardous or PBT, the 
pH was within the non-corrosive range, and waste gen-
eration was below 50 g. Conversely, the reported method 
showed blank spaces in the toxic and hazardous classifi-
cations due to the use of methanol, which is categorized 
as both toxic and hazardous under TRI and RCRA crite-
ria. Although NEMI offers a helpful preliminary screen-
ing of a method’s environmental impact, latest studies 
have shown limitations in its reliability for comparative 
evaluations  [37]. The tool’s simplified pass/fail approach 
depends on a limited set of requirements and may not 
fully capture the nuances of method greenness. There-
fore, in this study, we employ NEMI as a preliminary 
screen but supplement it with additional robust, quanti-
tative greenness metrics to allow an additional compre-
hensive and trustworthy comparison of the suggested 
approach with current methods. This approach allows for 
an additional nuanced evaluation of the method’s envi-
ronmental influence, providing a solid foundation for 
further sustainability assessments using complementary 
tools.

Complex GAPI tool
This tool offers a more comprehensive semi-quantita-
tive assessment of a method’s greenness, addressing 
the limitations of simpler tools like NEMI [42]. Build-
ing upon the original GAPI, Complex GAPI incorpo-
rates an extra hexagonal field for CHEM21 parameters, 
facilitating a more nuanced assessment of sustainability 
across all stages of the analytical process, encompassing 
the collecting of samples, their preservation, prepara-
tion, transportation, analysis, and storage (Fig. S7). This 
tool employs a color-coded scale (green to yellow to red) 
to successfully assess ecological impacts at each stage 

Table 4 Quantification of MOM and OLO in medicinal formulations through the utilization of proposed chemometric analytical 
approaches, coupled with the implementation of the standard addition methodology
Preparation %Recovery ± %RSD (a)

CLS PCR PLS GA-PLS MCR-ALS
MOM Application 100.03 ± 0.862 100.02 ± 0.632 100.02 ± 0.797 100.25 ± 0.527 100.01 ± 0.621

Standard addition 100.23 ± 0.475 100.38 ± 0.673 99.04 ± 0.655 100.85 ± 0.415 99.14 ± 0.622
OLO Application 100.21 ± 0.824 100.52 ± 0.824 100.11 ± 0.792 100.25 ± 0.651 100.54 ± 0.522

Standard addition 99.98 ± 0.705 99.99 ± 0.646 99.11 ± 0.622 99.74 ± 0.591 100.45 ± 0.692
aAverage of three determinations
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Table 5 Comprehensive assessment of environmental sustainability utilizing six advanced assessment tools for both the proposed 
and existing methods
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of the method. A key quantitative metric used in Com-
plex GAPI is the Environmental factor (E-factor), which 
measures the ratio of waste produced to the amount of 
product obtained. Lower E-factor values indicate larger 
sustainability because of reduced production of waste. 
The user-friendly software provided with Complex 
GAPI facilitates the easy generation of pictograms for 
the visual representation of results. In our study, Com-
plex GAPI analysis revealed the extraordinary green-
ness of the developed method, as demonstrated by the 
predominance of green icons across various stages of 
the analytical process. The interestingly low E-factor fur-
ther confirmed the approach’s low waste production and 
favorable environmental profile, as outlined in (Table 5). 
These results underscore the method’s alignment with 
green chemistry principles and its potential for reduc-
ing the environmental footprint of pharmaceutical analy-
sis. However, it is important to note that Complex GAPI 
mainly emphasizes environmental factors but does not 
comprehensively cover other key aspects of sustainabil-
ity, including waste reduction, energy efficiency, and the 
incorporation of renewable materials. Consequently, 
while Complex GAPI provides valuable insights into the 
method’s greenness, combining it with extra quantitative 
tools is suggested for an additional thorough evaluation 
of overall sustainability.

AGREE tool
This tool provides a quantitative method for evaluating 
the environmental friendliness of an analytical technique, 
in alignment with the 12 guiding principles of green ana-
lytical chemistry [43]. One of the primary benefits of 
AGREE is its adaptability, permitting the customization 
of parameter weights according to their importance for 
the specific analytical technique. This capability allows 
for assessments that are specifically tailored to high-
light the most relevant greenness criteria for a particular 
application. The AGREE method produces a final score 
within a range of 0 to 1, providing a concise summary of 
overall method greenness. Additionally, the visual clock 
pictogram generated by the AGREE software identi-
fies specific areas for potential improvement, facilitat-
ing targeted optimization of the method’s environmental 
performance. In this study, AGREE analysis was con-
ducted for both the proposed method and the previously 
reported method. Detailed results of these assessments 
are provided in the supplementary material. The sug-
gested method shows exceptional greenness, attaining an 
elevated AGREE score of 0.90 as shown in (Fig. S8). This 
score indicates better performance in terms of adherence 
to green chemistry principles compared to existing meth-
ods. The graphical representations shown in (Table  5) 
clearly highlight the outstanding greenness profile of 
the proposed method, emphasizing its environmentally 

sustainable features and validating its conformity with 
eco-friendly analytical standards. These results under-
score the method’s potential to significantly reduce the 
environmental impact of pharmaceutical analysis. Nev-
ertheless, it is significant to note that AGREE mainly 
concentrates on environmental factors based on the prin-
ciples of green chemistry. However, other important sus-
tainability aspects, such as safety, analytical performance, 
and cost-efficiency, are not specifically covered by this 
tool. Therefore, while AGREE provides valuable insights 
into a method’s greenness, it is suggested to couple 
this approach with additional tools that evaluate other 
aspects of sustainability for a more thorough assessment.

Carbon footprint analysis
This analysis offers a valuable quantitative metric for 
evaluating how analytical techniques affect the environ-
ment in terms of kilos of CO2 equivalent (kg CO2 eq), 
which is a measure of greenhouse gas emissions [44–48]. 
Unlike qualitative or semi-quantitative assessments, this 
analysis allows direct comparison of the environmen-
tal effects of various analytical techniques on operations 
and lifecycles on a standardized, quantitative scale. This 
makes it an excellent complement to other greenness 
evaluation tools like NEMI, Complex GAPI, and AGREE, 
as it covers additional aspects of environmental impact 
not captured by these techniques. In this study, we com-
puted the carbon footprint utilizing the following stan-
dard equation:

 

Carbon footprint(kgCO2 eq) =
∑

Instrument Power (kW )

· Analysis time (h)
· Emission factor (kg CO2/kWh)

Our proposed method shows a significantly lower car-
bon footprint of 0.021 kg CO2 eq per sample analyzed, as 
shown in (Table 5). In contrast, the previously reported 
method exhibited a substantially higher environmental 
impact, with a carbon footprint of 0.074 kg CO2 equiva-
lent per examined sample. The decreased carbon foot-
print of our method can be ascribed to multiple factors 
including lower electricity usage due to shorter analysis 
times, elimination of the derivatization step, and replace-
ment of hazardous solvents, leading to reduced emissions 
associated with transportation. Overall, the proposed 
method achieves a remarkable 59% reduction in CO2 
emissions compared to the reported method, further 
confirming its favorable environmental profile.

BAGI tool
The Blue Applicability Grade Index (BAGI) offers a novel 
approach to evaluating analytical methods by quan-
tifying their “blueness,” which reflects their practical 
applicability and real-world effectiveness [49]. Unlike 
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traditional metrics that primarily focus on environmen-
tal aspects (“greenness”), BAGI provides a comprehen-
sive assessment of a method’s suitability based on crucial 
operational criteria. BAGI evaluates ten key factors that 
influence a method’s practical: sample productivity, the 
type of analysis, the number of analytes used, the equip-
ment used, the requirements for sample preparation, 
the number of samples analyzed in an hour, the materi-
als and reagents needed, the necessity of pre-concen-
tration steps, the degree of automation, and the amount 
of sample needed. Each factor is measured from 1 (the 
least) to 10 (the highest) on a scale. The last BAGI score 
is calculated as the individual scores’ geometric mean, 
with higher scores demonstrating greater appropriate-
ness, usefulness, and suitability for the intended use. In 
our study, the suggested approach attained an impressive 
BAGI score of 90, demonstrating exceptional real-world 
applicability. As shown in (Table 5), this high BAGI score 
underscores the method’s numerous benefits in terms of 
reduced hazards, cost and time effectiveness, and overall 
usability in practical settings. However, it’s important to 
note that while BAGI provides useful information about 
the method’s practical applicability, it doesn’t provide a 
comprehensive assessment of overall sustainability. To 
accomplish a more holistic assessment that considers 
ecological friendliness, analytical performance, and prac-
ticality, we complemented the BAGI assessment with the 
RGB12 tool.

RGB12 tool
The RGB12 algorithm, presented by Paweł-Nowak et 
al. in 2021 [50], offers a comprehensive and easy-to-use 
quantitative technique for assessing the “whiteness” of 
methods. This innovative approach evaluates methods 
based on 12 WAC principles, providing a holistic view 
of sustainability that encompasses economic, analyti-
cal, and environmental factors [51]. The RGB12 algo-
rithm comprises 12 distinct algorithms divided into three 
subgroups. Green subgroup (G1-G4): emphasizes key 
GAC considerations, includes waste reduction, toxic-
ity, energy conservation, and reagent minimization, and 
impacts on animals, humans, and genetic changes. Red 
subgroup (R1-R4): discusses validation criteria like accu-
racy, precision, LOD, LOQ, and application scope. Blue 
subgroup (B1-B4): Evaluates practical and economic fac-
tors, including cost-efficiency and time savings. The final 
“whiteness” score is calculated by summing the method’s 
performance across all three-color domains, reflect-
ing its adherence to WAC principles. In our study, the 
proposed method achieved a score of 90.8, as shown in 
(Table  5). This high score illustrates the method’s mul-
tifaceted advantages in terms of, practical applicability, 
and analytical effectiveness. By integrating the RGB12 
assessment with other sustainability measurements, we 

have conducted an entire and reliable assessment of the 
method’s overall sustainability. This systems-oriented 
approach, utilizing multiple complementary tools, over-
comes the limitations of single-metric assessments and 
provides a more objective and thorough analysis of the 
method’s sustainability profile.

Conclusion
In this research, we successfully developed and validated 
an innovative UV-visible spectrophotometric method 
combined with advanced chemometric techniques for 
employing UV-visible spectroscopy to concurrently 
determine MOM, OLO, and the genotoxic impurities 
MTS and DAP. The implementation of the KSC for con-
structing the validation set ensured a comprehensive 
and unbiased assessment of the method’s performance 
throughout the whole concentration range, overcoming 
the limitations associated with traditional random data 
splitting techniques. Our rigorous assessment of 5 mod-
els, including PLS, PCR, CLS, GA-PLS, and MCR-ALS 
demonstrated the robustness, sensitivity, accuracy, and 
precision of the proposed approach. Each model achieved 
excellent recovery rates, low bias-corrected prediction 
errors, and adequate limits of detection, confirming the 
method’s reliability and applicability in pharmaceutical 
quality control with MCR-ALS becoming the best per-
former by both quantitatively and qualitatively resolv-
ing spectra of pure components. In accordance with 
the concepts of GAC and WAC, the method employed 
environmentally friendly solvents and underwent a com-
prehensive sustainability assessment using six state-of-
the-art tools: NEMI, Complex GAPI, AGREE, Carbon 
Footprint Analysis, RGB12 Metrics, and the BAGI. The 
favorable outcomes across these metrics highlighted the 
method’s eco-friendliness, affordability and practical-
ity, contributing significantly to sustainable development 
goals in the pharmaceutical industry.
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