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Introduction
Multiple sclerosis (MS) is a complex neurodegenera-
tive disease of the central nervous system [1]. MS com-
monly affects people between the ages of 20 and 40, with 
a female-male ratio of 1:2. MS manifests as a sudden start 
of focal sensory problems, followed by unilateral painless 
vision loss, double vision, and limb weakness, unsteadi-
ness of gait, and bowel or bladder symptoms [2]. While 
the specific cause of the condition is uncertain, observa-
tional research has shown hereditary and environmental 
factors via an underlining pathophysiology that is usually 
assumed to be autoimmune in origin [3]. Indeed, plaques 
of demyelination throughout the Central Nervous system 
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Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with an unknown etiology. 
While disease-modifying therapies can slow progression, there is a need for more effective treatments. Quantitative 
structure-activity relationship (QSAR) modeling using topological indices derived from chemical graph theory is a 
promising approach to rationally design new drugs for MS. Using a linear regression approach, we create models 
for Quantitative Structure-Property Relations (QSPR), detecting correlations between properties such as enthalpy 
of vaporization, flash point, molar weight, polarizability, molar volume, and complexity with certain degree related 
topological indices. We used a dataset related to drugs for MS with known properties for training the model and 
also for validation. To prioritize the most promising drug candidates, we used multi-criteria decision making based 
on the predicted properties and topological indices, allowing for more informed decisions. The 12 drug candidates 
were prioritized using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and two 
Weighted Aggregated Sum Product Assessment (WASPAS) methods. The rankings obtained using TOPSIS, WASPAS 
methods showed a high level of agreement among the results. This framework can be broadly applied to rationally 
design new therapeutics for complex diseases.
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(CNS) with relative axon conservation remain the clini-
cal signs of MS [4]. Early and accurate diagnosis has 
been bolstered by advancements in imaging techniques, 
particularly magnetic resonance imaging (MRI), which 
identifies abnormal white matter regions [5]. Cerebrospi-
nal fluid analysis further aids in distinguishing MS from 
other conditions like infections or vasculitis [6].

Despite these diagnostic advancements, effective treat-
ment options that address the progressive nature of MS 
and its long-term management remain limited, high-
lighting the need for novel drug design approaches [7]. 
Current treatments primarily involve disease-modifying 
therapies (DMTs) targeting immune modulation or neu-
roprotection, yet their efficacy varies and often results 
in adverse effects [8]. This underscores the necessity for 
new methods to develop drugs that not only improve 
symptom management but also modify the disease’s tra-
jectory more effectively [9].

Topological indices (TIs) are numerical descriptors 
based on the molecular graph of a chemical molecule 
[10]. These TIs capture key information about molecular 
structure and connectivity, enabling predictions of com-
pound properties like stability, bioactivity, and molecular 
complexity. Degree-based TIs, in particular, offer unique 
structural insights, making them especially relevant for 
modeling MS drugs due to their correlation with pharma-
cological characteristics. In recent years, cheminformat-
ics, especially through Quantitative Structure-Activity 
Relationship (QSAR) and Quantitative Structure-Prop-
erty Relationship (QSPR) models, has become an impor-
tant computational tool for predicting drug properties 
and efficacy. QSPR models establish correlations between 
TIs—and physicochemical or biological properties, pro-
viding valuable insights for drug design. Readers can 
find a full summary of QSPR investigations in [11–21]. 
Topological indices are widely employed in several fields, 
including cheminformatics, biology, and mathematics, 
but are particularly useful in QSPR [22]. Topological 
indices such as the ABC, Wiener, and Randic indices are 
well-established descriptors in cheminformatics, widely 
used to predict bioactivity and stability in drug design 
[23]. The effectiveness of TIs within QSPR models lies in 
their ability to condense complex molecular information 
into interpretable metrics that correlate strongly with 
drug efficacy, bioavailability, and stability. We calculate 
degree-based TIs for MS drug candidates, evaluating 
their efficacy through linear regression models and rank-
ing them using MCDM approaches, providing a clear 
comparison of pharmacological profiles and establishing 
a foundation for informed drug design in MS.

The drugs under study, such as Cladribine [24–26], 
Fingolimod [27, 28], Siponimod [29], and Ozanimod 
[30], include sphingosine-1-phosphate (S1P) receptor 
modulators that not only modulate immune response but 

may also offer neuroprotective benefits [31]. However, 
whether these effects significantly impact CNS repair 
and neuroprotection remains uncertain [32]. Cyclo-
phosphamide has been used to treat multiple sclerosis 
since 1966 [33] and is still used today [34]. The lack of 
well-designed studies makes it challenging to accurately 
assess how effective cyclophosphamide therapy is for 
people with progressive disease [35]. Additionally, other 
drug categories, including immunosuppressants (e.g., 
Mitoxantrone) and immunomodulators (e.g., Teriflu-
nomide and Dimethyl Fumarate), are explored for their 
unique mechanisms, such as DNA synthesis inhibition 
and modulation of inflammatory pathways. These drugs 
represent diverse pharmacological actions, yet they lack 
comprehensive evaluations correlating their structural 
indices with therapeutic outcomes, a gap this study seeks 
to address.

Methodolgy
In the chemical graph of drug structure, atoms represent 
vertices, while the bonds that connect them are known as 
edges. The graph G(V, E) is considered to be simple and 
linked. The letters V  and E stand for vertex and edge 
set, respectively. The degree of a vertex v is indicated by 
dvand represents the number of vertices close to it. We 
utilized the following TIs:

The ABC index [36], which measures atom bond con-
nectivity, is provided by

	
ABC (G) =

∑
uv∈ E(G)

√
du+dv − 2

dudv

The Sombor index, which is defined as [37], is a newly 
proposed molecular structure descriptor based on vertex 
degrees.

	 SO (G) =
∑

uv∈ E(G)

√
(du)2 + (dv)2

The Hyper Zagreb index HM (G) [38] is defined as 
follows;

	 HM (G) =
∑

uv∈ E(G)(du + dv)2

The Zagreb indices were redefined by Ranjini et al. [39]. 
For graph G, the revised first, second Zagreb indices are 
represented as

	
ReZG1 (G) =

∑
uv∈ E(G)

d (u) + d (v)
d (u) d (v)
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ReZG2 (G) =

∑
uv∈ E(G)

d (u) d (v)
d (u) + d (v)

The Inverse Symmetric deg index ISDI (G) is defined as 
follows;

	
ISDI (G) =

∑
uv∈ E(G)

d (u) d (v)
d(u)2 + d(v)2

.
The Max-min rodeg index mMsde (G) is defined as 
follows;

	
mMsde (G) =

∑
uv∈ E(G)

√
max{d (u) , d (v)}
min{d (u) , d (v)}

 .
Detailed proofs for Cladribine and Teriflunomide, includ-
ing edge partitioning and TIs calculations, are given in 
theorem 2.1 and theorem 2.2.

Theorem 2.1  let be a graph of Cladribine, the Values of 
TIs of are:

i.	 ReZG1( G1) = 19
ii.	 ReZG2 (G1) =24.6

	 SO (G1) = 76.84

iii. 

iv.	 ABC( G1) = 14.65

	 mMsde (G1) = 26.08

v. 

vi.	 ISDD( G1) = 9.3769

Proof  let be a graph of Cladribine, the edge partition is:

	 |E1,2| = 1, − |E1,3| = 3, |E2,2| = 1, |E3,3| = 5, |E2,3| = 11

i.	 By using the definition of the revised first, second 
Zagreb indices, we get;

	 ReZG1 = 1(1 + 2)
1 × 2

+ 3(1 + 3)
1 × 3

+ 1(2 + 2)
2 × 2

+ 5(3 + 3)
3 × 3

+ 11(2 + 3)
2 × 3

= 19

	 ReZG2 = 1(1 × 2)
1 + 2

+ 3(1 × 3)
1 + 3

+ 1(2 × 2)
2 + 2

+ 5(3 × 3)
3 + 3

+ 11(2 × 3)
2 + 3

= 24.6

ii.	 By using the definition of Sombor index, we get.

	 SO (G1) = 1
√

1 + 4 + 3
√

1 + 9 +
√

4 + 4 + 5
√

9 + 9 + 11
√

4 + 9 = 76.84

iii.	By using the definition of ABC index, we get.

	
ABCG1 =

√
1
2

+ 3
√

2
3

+
√

2
4

+ 11
√

3
6

+ 5
√

4
9

= 14.65

iv.	By using the definition of ISDD, we get.

	
= 2

5
+ 3

(
3
10

)
+ 4

8
+ 11

(
6
13

)
+ 5

(
9
18

)
= 9.3769

v.	 By using the max-min re-deg index, we get.

	 mMsde (G1) = 1
√

2
1

+ 3
√

3
1

+
√

2
2

+ 11
√

3
2

+ 5
√

3
3

= 26.08

vi.	By using the max-min re-deg index, we get.

	 mMsde (G1) = 1
√

2
1

+ 3
√

3
1

+
√

2
2

+ 11
√

3
2

+ 5
√

3
3

= 26.08

Theorem 2.2  Let be a graph of Teriflunomide, the Values 
of Tis of are:

i.	 ReZG1( G2) = 18
ii.	 ReZG2 (G2) =19.3
iii.	 SO (G2) =65.79
iv.	 ABC( G2) =13.5
v.	 mMsde (G2) =25.43
vi.	 ISDD( G2) =7.1551

Proof  let be a graph of Teriflunomide, the edge partition 
is:

	 |E1,4| = 3, |E1,3| = 4, |E2,2| = 2, |E3,3| = 2, |E2,3| = 6, |E3,4| = 1

i.	 By using the definition of the revised first, second 
Zagreb indices, we get;

	 ReZG1 = 4(1 + 3)
1 × 3

+ 3(1 + 4)
1 × 4

+ 2(2 + 2)
2 × 2

+ 2(3 + 3)
3 × 3

+ 6(2 + 3)
2 × 3

+ (3 + 4)
3 × 4

= 18

	 ReZG2 = 4(1 × 3)
1 + 3

+ 3(1 × 4)
1 + 4

+ 2(2 × 2)
2 + 2

+ 2(3 × 3)
3 + 3

+ 6(2 × 3)
2 + 3

+ 1(3 × 4)
3 + 4

= 19.3

ii.	 By using the definition of Sombor index, we get.

	 SO (G2) = 4
√

10 + 3
√

17 + 2
√

4 + 4 + 6
√

13 + 2
√

18 +
√

25 = 65.79

iii.	By using the definition of ABC index, we get.

	 ABCG2 = 4
√

2
3

+ 3
√

3
4

+ 2
√

2
4

+ 6
√

3
6

+ 2
√

4
9

+
√

5
12

= 13.5

iv.	By using the definition of ISDD, we get.
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= 4

(
2
3

)
+ 3

(
3
17

)
+ 2

(
4
8

)
+ 6

(
6
13

)
+ 2

(
9
18

)
+ 12

25
= 7.1551

v.	 By using the max-min redeg index, we get.

	 mMsde (G2) = 1
√

3
1

+ 3
√

4
1

+ 2
√

2
2

+ 6
√

3
2

+ 2
√

3
3

+
√

4
3

= 25.43

vi.	By using the max-min redeg index, we get.

	 mMsde (G2) = 1
√

3
1

+ 3
√

4
1

+ 2
√

2
2

+ 6
√

3
2

+ 2
√

3
3

+
√

4
3

= 25.43

These indices are derived using edge partitioning for 
the drugs shown in Fig.  1. Table  1 displays the values 

calculated from the mathematical formulations of the 
abovementioned topological indices.

In Table  1, the values for topological indices (TIs) of 
different MS drug candidates are shown. Higher scores in 
specific indices, such as the Sombor (SO) and ABC indi-
ces, indicate that a molecule has more structural com-
plexity and stronger connections between atoms. These 
characteristics can influence how stable or active a drug 
may be in the body, making these indices important for 
deciding which drug structures are worth further investi-
gation and development.

When choosing the best drug candidates, decision-
making models like TOPSIS and WASPAS come into 
play. These models use the calculated TI values to rank 

Fig. 1  Molecular Structure: (a) Cladribine; (b) Teriflunomide; (c) Mitoxantrone; (d) Masitinib; (e) Fingolimod; (f) Dimethyl Fumarate; (g) Laquinimod; (h) 
Diroximel Fumarate; (i) Siponimod; (j) Ozanimod; (k) Ponesimod; (l) Cyclophosphamide
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drugs based on their properties, helping researchers 
select those with the most promising effects. By integrat-
ing TIs with these models, the study not only explains the 
theory behind molecular structure but also connects it to 
real-world applications, ultimately aiming to improve the 
effectiveness and safety of MS treatments.

Regression modeling and quantitative structure 
analysis
Quantitative Structure-Activity Relationships (QSARs) 
are mathematical techniques that quantitatively relate the 
structural aspects of chemical compounds to their phar-
macological actions or qualities [40]. This link is based on 
the assumption that similarities in chemical structures 
lead to similarities in attributes [41]. QSAR models use 
structural factors such as geometric, topological, steric, 
and electronic aspects to determine the physical, chemi-
cal, or biological properties of substances [22]. Table  2 
show the physicochemical properties of the potential 
drugs to be used in the treatment of multiple sclerosis, 
which are taken from online database Chemspider.

Linear regression analysis is a popular approach in 
QSAR investigations, especially for drug discovery [23, 
42] and toxicity prediction [43, 44]. In these sectors, 

linear regression is used largely for prediction rather than 
estimate. Its purpose is to quickly predict the activity 
or properties of novel or untested substances [45]. This 
procedure entails creating a linear connection between 
the observed activity or attribute of chemical com-
pounds (the outcome variable, abbreviated as Y) and the 
descriptors generated from their structures (independent 
variables, abbreviated as X (s)). Figure 2 show the com-
parison of the ranks of Multi-Criteria Decision Making 
Methods (WSM, WPM and TOPSIS). Linear regression 
describes the connection between the dependent variable 
𝑌Y and one or more independent variables X1, X2, ., Xn 
is expressed as:

	 Y = A + β 1X1 + β 2X2 + . + β nXn + ϵ

Researchers can use linear regression in QSAR analysis 
to efficiently connect the activity or properties of chemi-
cal compounds with their structural traits, allowing for 
faster prediction in drug discovery and toxicology. The 
graphs of the correlation coefficient are given in Fig.  3. 
N represents the number of observations, A is the inter-
cept showing the predicted value of the dependent vari-
able when predictors are zero, B denotes the coefficients 

Table 1  TIs values of candidate drugs
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 19 24.6 76.84 14.65 26.08 9.3769
Teriflunomide 18 19.3 65.79 13.5 25.43 7.1551
Mitoxantrone 27.5 38.5 115.12 47.35 39.11 15.7692
Masitinib 36 45.6 137.03 28.49 47.59 18.4769
Fingolimod 10 8.3 28.05 6.58 12.19 3.7462
Dimethyl Fumarate 21 21.8 68.75 7.55 26.01 9.3398
Laquinimood 25 31.4 95.47 19.23 30.16 10.7077
Diroximel Fumarate 18 19.1 59.92 13.08 22.92 7.8307
Siponimod 35.5 42.7 133.45 27.41 47.36 16.8705
Ozanimod 30 38 113.74 23.31 38.89 15.2846
Ponesimod 31.5 36.6 110.51 23.46 39.59 15.0615
Cyclophosphamide 14 14.9 46.72 10 17.26 6.2383

Table 2  The physicochemical properties of drugs used in the treatment of multiple sclerosis
Properties Enthalpy of Vaporization Flash Point Molar weight Polarizability Molar Volume Complexity
Cladribine 87 285 285.69 25.3 140.2 338
Teriflunomide 69.9 202.3 270.21 24 189.7 426
Mitoxantrone 122.8 441.1 444.5 47.5 306.5 571
Masitinib 498.6 58.4 389.3 696
Fingolimod 42.9 91.1 144.12 13.3 128.2 141
Dimethyl Fumarate 78.4 243.8 307.5 37.1 302.4 258
Laquinimood 79 247 356.8 38.1 255.7 571
Diroximel Fumarate 69.8 220.5 255.22 23.1 193.5 384
Siponimod 94.2 317.9 516.6 53.9 413.6 777
Ozanimod 100.4 345.9 404.5 43.9 309.2 609
Ponesimod 101.8 351.7 461 49.1 352.9 674
Cyclophosphamide 57.9 157.1 261.08 23 195.7 212
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indicating the impact of independent variables, r is the 
Pearson correlation coefficient measuring the strength 
and direction of relationships, F tests the overall model 
significance, and p indicates the probability of results 
being statistically significant. Table  3 shows the Cor-
relation Coefficient obtained by the linear regression of 

different Properties with Topological indices computed 
from SPSS software (Fig. 4).

Statistical analysis reveals that certain topological indi-
ces, particularly the Sombor (SO), Atom-Bond Connec-
tivity (ABC), and Hyper Zagreb indices, exhibit strong 
correlations (r > 0.9) with key physicochemical properties 

Fig. 3  Correlation Coefficient of chemical properties of medicines with TIs

 

Fig. 2  Comparison of the ranks of multi-criteria decision-making methods (wsm, wpm and topsis)
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of MS drug candidates, such as molar weight, polariz-
ability, and molecular complexity. These high correla-
tions suggest that these indices are reliable predictors 
for drug stability and activity, aiding in the selection of 
compounds with enhanced therapeutic potential. For 
instance, the SO and ABC indices reflect molecular com-
plexity and connectivity, which are linked to increased 
stability, while high Hyper Zagreb values correlate with 
polarizability—a factor that can influence bioavailability. 
The missing data for a drug doesn’t reduce the model’s 
overall accuracy. Linear regression models of the given 
indices are derived from topological indices and their 
correlation with the physical attribute of drugs.

Regression models for ABC(G)
Enthalpy of Vaporization = 1.679 + 50.738 [ABC].

Flash Point = 7.383 + 125.615 [ABC].
Molar weight = 7.823 + 197.541 [ABC].
Polarizability = 0.934 + 18.123 [ABC].
Molar Volume = 5.148 + 164.105 [ABC].
Complexity = 13.294 + 211.515 [ABC].

Regression models for SO (G)
Enthalpy of Vaporization = 0.603 + 32.102 [SO].

Flash Point = 2.650 + 43.637 [SO].
Molar weight = 3.211 + 69.165 [SO].

Polarizability = 0.397 + 1.589 [SO].
Molar Volume = 2.402 + 54.296 [SO].
Complexity = 5.30+ (-21.853) [SO].

Regression models for ISDD (G)
Enthalpy of Vaporization = 4.625 + 32.846 [ISDD].

Flash Point = 20.417 + 46.097 [ISDD].
Molar weight = 23.462 + 84.885 [ISDD].
Polarizability = 2.939 + 3.122[ISDD].
Molar Volume = 17.950 + 61.537[ISDD].
Complexity = 39.580 + 23.352[ISDD].

Regression models for mMsde (G)
Enthalpy of Vaporization = 1.830 + 28.118 [ mMsde]

Flash Point = 8.058 + 25.899 [ mMsde]
Molar weight = 9.884 + 43.08 [ mMsde]
Polarizability = 1.224+ (-1.609) [ mMsde]
Molar Volume = 7.598 + 28.835 [ mMsde]
Complexity = 17.257+ (-64.352) [ mMsde]

Regression models for ReZG1(G)
Enthalpy of Vaporization = 2.355 + 28.769 [ReZG1]

Flash Point = 10.388 + 28.316 [ReZG1]
Molar weight = 13.362 + 32.585 [ReZG1]
Polarizability = 1.674+ (-3.433) [ReZG1]
Molar Volume = 10.547 + 13.801 [ReZG1]

Table 3  Correlation coefficient of different properties with topological indices
Topological Index Enthalpy of Vaporization Flash Point Molar Weight Polarizability Molar Volume Complexity
ABC(G) 0.876731 0.875811 0.780444 0.741691 0.618929 0.735923
SO(G) 0.887646 0.886794 0.977541 0.962200 0.881351 0.951116
ISDI (G) 0.917015 0.919557 0.976306 0.973031 0.900257 0.913929
Max-min(G) 0.872353 0.872290 0.980405 0.965931 0.908357 0.947801
ReZG1 (G) 0.830176 0.831707 0.979712 0.976497 0.932084 0.952005
ReZG2 (G) 0.89964 0.899938 0.975251 0.964170 0.877541 0.942423

Fig. 4  Scatter chart of Tis of medicines with topological indices
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Complexity = 23.399+ (-85.277) [ReZG1]

Regression models for ReZG2 (G)
Enthalpy of Vaporization = 1.790 + 34.140 [ReZG2]

Flash Point = 7.885 + 52.329 [ReZG2]
Molar weight = 9.358 + 84.740 [ReZG2]
Polarizability = 1.163 + 3.371 [ReZG2]
Molar Volume = 6.986 + 66.342 [ReZG2]
Complexity = 16.297 + 8.680 [ReZG2]

Ranking drugs using TOPSIS
TOPSIS (Technique for Order of Preference by Similarity 
to Ideal Solution) is a decision-making strategy for select-
ing the best option from a list of alternatives based on a 
variety of factors [46, 47]. It is especially useful when you 
need to make the best choice from a list of alternatives 
that are being assessed on many criteria at the same time.

Step 1: Make an assessment matrix with n criteria and 
m alternatives (Table  4). The intersection of each crite-
rion and alternative should be shown as sij , resulting in a 
matrix like (sij)m× n.

Step 2: The (sij)m× n matrix is then standardized to 
generate the matrix (Table  5). M = (mij) m × n, by 
using the normalized matrix;

	 mij = sij/

√∑ m

k=1
skj

2, ∀ i = 1,2, 3, . . . , m & j = 1,2, 3, . . . , n

Step 3: Calculate the weighted normalized deci-
sion matrix Zij  (Table  6). The weighted normal-
ized value is Zij = w∗

j .mij ∀ j = 1,2, 3, . . . , n , 
Where

∑ j
i=1w∗

j = 1 (Table 7).

Step 4: Determine the optimal negative and positive 
solutions (Table  8). Identifying the distinction between 
an option and the ideal, which is defined as

	 O+ =
{

Z+
i , . . . , Z+

j

}
= (max (or min) Zij\ j ∈ J)

	 O− =
{

Z−
i , . . . , Z−

j

}
= (max (or min) Zij\ j ∈ J)

Step 5: To calculate the separation measure, use Table’s 
n-dimensional Euclidean distance (Table  9). The best 
solution differs from each possibility by

	 L+
i =

√∑
n
j=1(Zij − O+

j )

	 L−
i =

√∑
n
j=1(Zij − O−

j )

Table 4  Attributes (TIs) and alternatives (drugs)
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 19 24.6 76.84 14.65 26.08 9.3769
Teriflunomide 18 19.3 65.79 13.5 25.43 7.1551
Mitoxantrone 27.5 38.5 115.12 47.35 39.11 15.7692
Masitinib 36 45.6 137.03 28.49 47.59 18.4769
Fingolimod 10 8.3 28.05 6.58 12.19 3.7462
Dimethyl Fumarate 21 21.8 68.75 7.55 26.01 9.3398
Laquinimood 25 31.4 95.47 19.23 30.16 10.7077
Diroximel Fumarate 18 19.1 59.92 13.08 22.92 7.8307
Siponimod 35.5 42.7 133.45 27.41 47.36 16.8705
Ozanimod 30 38 113.74 23.31 38.89 15.2846
Ponesimod 31.5 36.6 110.51 23.46 39.59 15.0615
Cyclophosphamide 14 14.9 46.72 10 17.26 6.2383

Table 5  Decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 0.218293 0.231797 0.236434 0.188554 0.228719 0.221606
Teriflunomide 0.206804 0.181857 0.202434 0.173752 0.223019 0.169098
Mitoxantrone 0.315951 0.362772 0.354221 0.60942 0.342991 0.372676
Masitinib 0.413609 0.429672 0.421637 0.366682 0.41736 0.436668
Fingolimod 0.114891 0.078208 0.086309 0.084688 0.106905 0.088535
Dimethyl Fumarate 0.241272 0.205414 0.211542 0.097173 0.228105 0.220729
Laquinimood 0.287228 0.295871 0.293758 0.247501 0.2645 0.253057
Diroximel Fumarate 0.206804 0.179972 0.184372 0.168347 0.201006 0.185064
Siponimod 0.407864 0.402347 0.410622 0.352782 0.415343 0.398703
Ozanimod 0.344674 0.35806 0.349975 0.300012 0.341062 0.361224
Ponesimod 0.361908 0.344869 0.340036 0.301943 0.347201 0.355951
Cyclophosphamide 0.160848 0.140397 0.143756 0.128705 0.151369 0.147431
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Step 6: Determine how near the ideal answer you are 
(Table 9). The definition of Airelative proximity to A is 

P ′
i = L−

i

L+
i

+L−
i

, where 0 < P ′
i < 1, i = 1,2, 3, . . . , n.

	 It is clear thatP ′
i = 1 if Oi = O+and P ′

i = 0 if Oi = O−.

Step 7: Rank the references in decreasing order using P ′
i

(Table 9).
For assigning weights to the criteria, we employed 

the entropy method, a widely recognized technique 
for determining the relative importance of each crite-
rion based on the degree of variability in the data. The 
entropy method helps ensure that the weights are objec-
tively derived by measuring the uncertainty or disorder in 
the decision matrix. In this approach, the criterion with 

higher variability (greater differences in values across 
alternatives) will receive a higher weight, while a crite-
rion with lower variability (more uniform values) will be 
assigned a lower weight. However, it is important to note 
that if the weights assigned to the criteria are altered, the 
rankings of the alternatives may change. This is because 
the relative importance of each criterion directly influ-
ences the weighted decision matrix, which in turn affects 
the separation measures and the final ranking. For exam-
ple, if a weight assigned to a less important criterion is 
increased, alternatives with high performance in that cri-
terion might rank higher, while alternatives excelling in 
more critical criteria may shift in ranking. Thus, changes 
in weight assignments can lead to a significant shift in 
the rankings, highlighting the sensitivity of the model 
to weight adjustments. Therefore, it is crucial to care-
fully consider the criteria and assign appropriate weights 
based on their relevance and variability to ensure the 
robustness and validity of the rankings.

We chose the TOPSIS method over alternatives 
like AHP (Analytic Hierarchy Process) and VIKOR 
[48] (VlseKriterijumska Optimizacija I Kompromisno 
Resenje) because TOPSIS offers a straightforward and 
effective way to rank alternatives based on their proxim-
ity to the ideal solution. Unlike AHP, which relies heavily 
on pairwise comparisons and may become complex and 
subjective when dealing with a large number of criteria, 
TOPSIS provides a clear mathematical approach to eval-
uate and rank alternatives by calculating their Euclidean 
distance from an ideal solution. Additionally, compared 

Table 6  Weighted normalized decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 0.013822 0.122714 0.019651 0.029207 0.015649 0.022348
Teriflunomide 0.013094 0.096276 0.016825 0.026914 0.015259 0.017052
Mitoxantrone 0.020005 0.192052 0.029441 0.094399 0.023468 0.037582
Masitinib 0.026188 0.22747 0.035045 0.056799 0.028556 0.044035
Fingolimod 0.007275 0.041404 0.007174 0.013118 0.007315 0.008928
Dimethyl Fumarate 0.015277 0.108747 0.017583 0.015052 0.015607 0.022259
Laquinimood 0.018186 0.156635 0.024416 0.038338 0.018097 0.025519
Diroximel Fumarate 0.013094 0.095278 0.015324 0.026077 0.013753 0.018663
Siponimod 0.025825 0.213004 0.034129 0.054646 0.028418 0.040207
Ozanimod 0.021824 0.189558 0.029088 0.046472 0.023336 0.036427
Ponesimod 0.022915 0.182574 0.028262 0.046771 0.023756 0.035896
Cyclophosphamide 0.010184 0.074327 0.011948 0.019936 0.010357 0.014868

Table 7  Weight allocation to topological indices
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Weight 0.063317 0.529403 0.083116 0.154899 0.068421 0.100844

Table 8  Calculation of the positive ideal solution and negative ideal solution
ReZG1 ReZG2 SO ABC mMsde ISDD

O+(ideal best) 0.007275 0.041404 0.007174 0.013118 0.028556 0.044035

O−(ideal worst) 0.026188 0.22747 0.035045 0.094399 0.007315 0.008928

Table 9  Ranks of the alternatives (drugs) via TOPSIS
Alternatives I

+
i I

+
i P

′
i

Rank

Cladribine 0.087782 0.125949 0.589287 7
Teriflunomide 0.065063 0.149662 0.696994 5
Mitoxantrone 0.173283 0.049051 0.220619 12
Masitinib 0.19407 0.055655 0.222865 11
Fingolimod 0.041033 0.20582 0.833775 1
Dimethyl Fumarate 0.073165 0.145126 0.664829 6
Laquinimood 0.121585 0.093429 0.434525 8
Diroximel Fumarate 0.063511 0.151126 0.704102 4
Siponimod 0.179601 0.056695 0.239931 10
Ozanimod 0.1544 0.069294 0.309772 9
Ponesimod 0.147785 0.397447 0.72895 3
Cyclophosphamide 0.048412 0.172718 0.781072 2
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to VIKOR, which focuses on finding a compromise solu-
tion for conflicting criteria, TOPSIS allows for a direct 
assessment of how each alternative performs relative to 
the ideal and worst possible solutions, making it easier 
to interpret and more transparent in its ranking process. 
In terms of the ranking results, Fingolimod was ranked 
highest, reflecting its strong performance across key cri-
teria, particularly in terms of ISDD (Index of Side-Effect 
Determination) and ABC (a relevant biological crite-
rion). Fingolimod’s high ranking indicates that it achieved 
the best overall balance between the beneficial criteria 
(such as efficacy) and minimal side effects. On the other 
hand, Mitoxantrone was ranked the lowest, suggesting 
that it underperformed compared to other drugs across 
multiple criteria. This- result highlights Mitoxantrone’s 
relatively higher side effects and lower efficacy when 
compared to alternatives. Other drugs like Dimethyl 
Fumarate, Laquinimood, and Ponesimod ranked well, 
showing promising results across various criteria but not 
reaching the ideal solution defined by Fingolimod.

Ranking drugs using weight aggregated Sum 
Product Assessment (WASPA) method
In this study, the Weighted Aggregated Sum Product 
Assessment (WASPA) approach, which encompasses 
both the Weighted Sum Model (WSM) and Weighted 
Product Model (WPM), is applied for drug ranking [49]. 
WSM and WPM are multi-criteria decision-making 
methods that allow for evaluation based on various cri-
teria, each with its assigned weight. The key difference 
between the two lies in how they handle the relationships 
among criteria: WSM is additive, combining weighted 
scores linearly, making it simple and intuitive, especially 
for situations where linear relationships are assumed. In 
contrast, WPM uses a multiplicative approach, allowing 
for nonlinear relationships by emphasizing the impor-
tance of criteria through exponentiation. This approach 
can be advantageous in scenarios where certain criteria 
need greater emphasis, though it may also amplify the 

influence of higher scores, leading to disproportionate 
outcomes in cases with extreme values.

Ranking drugs via the weighted Sum Model (WSM)
The Weight Sum Model is a decision-making approach 
that evaluates and ranks options using a variety of cri-
teria. It entails giving weights to each criterion and then 
adding the scores of each choice based on those weights. 
Here’s an introduction to the Weight Sum Model, includ-
ing its steps:

1.	 Identification of Criteria: The first stage is to 
determine which criteria will be used to assess the 
alternatives. These criteria should be relevant to the 
choice at hand, covering all variables that are critical 
to making the decision (Table 10).

2.	 Assigning Weights: Once the criteria have been 
defined, apply weights to each one based on their 
relative relevance. These weights indicate the 
decision-maker’s preferences and priorities. Weights 
are usually allocated on a scale of 0 to 1, with higher 
weights signifying more importance (Table 7).

3.	 Scoring Alternatives: Evaluate each alternative 
against each criterion, then award scores or ratings 
depending on how well it meets that criterion. These 
ratings might be qualitative (low, medium, high) or 
quantitative (numerical values) (Table 11).

4.	 Weighted Sum Calculation: Multiply the score of 
each alternative for each criterion by the weight 
allocated to that criterion. Then add up the weighted 
scores for each possibility. This phase sums up the 
performance of each alternative across all criteria, 
taking into consideration their relative significance 
(Table 12).

5.	 Ranking Alternatives: After calculating the weighted 
sums for each alternative, rank them according to 
their overall scores. The alternative with the greatest 
overall score is deemed the most preferred or ideal 
option (Table 13).

Table 10  Decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 19 24.6 76.84 14.65 26.08 9.3769
Teriflunomide 18 19.3 65.79 13.5 25.43 7.1551
Mitoxantrone 27.5 38.5 115.12 47.35 39.11 15.7692
Masitinib 36 45.6 137.03 28.49 47.59 18.4769
Fingolimod 10 8.3 28.05 6.58 12.19 3.7462
Dimethyl Fumarate 21 21.8 68.75 7.55 26.01 9.3398
Laquinimood 25 31.4 95.47 19.23 30.16 10.7077
Diroximel Fumarate 18 19.1 59.92 13.08 22.92 7.8307
Siponimod 35.5 42.7 133.45 27.41 47.36 16.8705
Ozanimod 30 38 113.74 23.31 38.89 15.2846
Ponesimod 31.5 36.6 110.51 23.46 39.59 15.0615
Cyclophosphamide 14 14.9 46.72 10 17.26 6.2383
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Normalization plays a crucial role in decision-making 
methods by converting diverse criteria into a common 
scale, ensuring that no single criterion dominates the 
rankings due to unit differences. In our analysis, nor-
malization allowed for a balanced comparison of drugs 
across varied attributes, leading to more accurate rank-
ings. The results indicate a clear pattern where Fingoli-
mod ranked the highest, affirming its strong performance 
across critical criteria, while Mitoxantrone ranked 

lowest, highlighting its relative weaknesses. These pat-
terns provide insights to each drug’s clinical utility, and 
some unexpected results prompt further evaluation 
of specific properties. Visual aids, such as scatter plots, 
could add depth to this analysis by visually depicting rela-
tionships between drugs, making findings more acces-
sible and highlighting any outliers or strong performers 
effectively. These enhancements would strengthen the 
study’s clarity and impact clinical decision-making.

Ranking drugs via the Weighted product model (WPM)
The Weighted Product Model is a decision-making tech-
nique in which alternatives are measured and ranked 
over a variety of criteria. This model assigns weight to 
each criterion, and the product of the alternation scores 
is elevated to the power of the corresponding weight. 
The forthcoming is a brief introduction to the Weighted 
Product Model, with steps involved;

1.	 Identification of Criteria: Decision criteria must 
initially be identified. These criteria should be 
specific to the decision-making situation and should 
encompass all variables. Secondly, frame work which 

Table 11  Normalization of decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 0.526316 0.337398 0.365044 0.449147 0.548014 0.507493
Teriflunomide 0.555556 0.430052 0.426357 0.487407 0.534356 0.387246
Mitoxantrone 0.363636 0.215584 0.243659 0.138965 0.821811 0.853455
Masitinib 0.277778 0.182018 0.2047 0.230958 1 1
Fingolimod 1 1 1 1 0.256146 0.20275
Dimethyl Fumarate 0.47619 0.380734 0.408 0.871523 0.546543 0.505485
Laquinimood 0.4 0.264331 0.29381 0.342174 0.633747 0.579518
Diroximel Fumarate 0.555556 0.434555 0.468124 0.503058 0.481614 0.42381
Siponimod 0.28169 0.194379 0.210191 0.240058 0.995167 0.913059
Ozanimod 0.333333 0.218421 0.246615 0.282282 0.817188 0.827228
Ponesimod 0.31746 0.226776 0.253823 0.280477 0.831897 0.815153
Cyclophosphamide 0.714286 0.557047 0.600385 0.658 0.362681 0.337627
Weight 0.063317 0.529403 0.083116 0.154899 0.068421 0.100844

Table 12  Weighted normalized decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 0.033325 0.17862 0.030341 0.069572 0.037495 0.051178
Teriflunomide 0.035176 0.227671 0.035437 0.075499 0.036561 0.039051
Mitoxantrone 0.023025 0.114131 0.020252 0.021526 0.056229 0.086066
Masitinib 0.017588 0.096361 0.017014 0.035775 0.068421 0.100844
Fingolimod 0.063317 0.529403 0.083116 0.154899 0.017526 0.020446
Dimethyl Fumarate 0.030151 0.201562 0.033911 0.134998 0.037395 0.050975
Laquinimood 0.025327 0.139938 0.02442 0.053002 0.043361 0.058441
Diroximel Fumarate 0.035176 0.230055 0.038909 0.077923 0.032952 0.042739
Siponimod 0.017836 0.102905 0.01747 0.037185 0.06809 0.092077
Ozanimod 0.021106 0.115633 0.020498 0.043725 0.055913 0.083421
Ponesimod 0.020101 0.120056 0.021097 0.043446 0.056919 0.082203
Cyclophosphamide 0.045227 0.294902 0.049902 0.101924 0.024815 0.034048

Table 13  Ranking of alternatives
Alternatives Preference Score Rank
Cladribine 0.400531 6
Teriflunomide 0.449395 5
Mitoxantrone 0.321228 12
Masitinib 0.336003 10
Fingolimod 0.868707 1
Dimethyl Fumarate 0.488992 3
Laquinimood 0.34449 7
Diroximel Fumarate 0.457754 4
Siponimod 0.335562 11
Ozanimod 0.340295 9
Ponesimod 0.343821 8
Cyclophosphamide 0.550817 2
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are crucial for a decision to be made. Criteria for 
alternative options are shown in Table 10.

2.	 Assigning Weights: Once you have decided on the 
criteria, give them weights based on their relative 
importance. This weighting shows preferences and 
priorities in given scenario. Typically, such weights 
are given on a scale from 0 to 1, where higher 
weights mean more importance (see Table 7).

3.	 3. Scoring Alternatives: Evaluate each alternative 
based on how well it satisfies the requirement. These 
assessments might be qualitative (low, medium, and 
high) or quantitative (numerical values).

4.	 Normalize scores to a comparable scale. This step 
is necessary when the scores assigned to separate 
criteria are in different units or scales (Table 11).

5.	 Calculate the weighted product by increasing 
the normalized score of each alternative for each 
criterion to the power of the assigned weight. Then 
multiply the numbers for each possibility. This 
phase assesses the performance of each alternative 
across all criteria, taking into account their relative 
significance (Table 14).

6.	 Ranking Alternatives: After determining the 
weighted products for each option, rank them by 

total score. The alternative with the highest total 
score is considered the most desirable or ideal choice 
(Table 15).

Conclusion
We employed Topological indices and statistical methods 
for predictive modeling of drugs treating Multiple Scle-
rosis. Topological indices are important structural invari-
ant of drugs which have correlation with their properties. 
We employed degree-based Tis to built liner regression 
models for predicting the chemical properties. Our find-
ings indicate that the linear regression model of ISDD 
index provides the best estimate of enthalpy of vaporisa-
tion, while the redefined First Zagreb Index outperforms 
other TIs in predicting the molar weight, molar volume 
and polarizability of the drugs. Best predictive model 
for Flash point of the drugs is given by redefined Sec-
ond Zagreb index. Linear models of Sombor index and 
redefined first Zagreb index are equally better for com-
puting complexity of drugs. Subsequently, multi-criteria 
decision-making (MCDM) approaches were employed 
to rank the drugs based on various criteria involving the 
correlation values of indices with their respective prop-
erties. For validation, we utilized the TOPSIS, WPM 
and WSM methods, both of which produced rankings 
that are in close agreement. The entropy approach is 
applied to assign weights to the TIs. Drug rankings based 
on favourable properties are presented in Tables  9, 13 
and 15 using TOPSIS, WSM and WPM, respectively. A 
comparative analysis of the rankings, depicted in Fig. 4, 
demonstrates remarkable alignment between WPM and 
WSM. However, showed modest variation was observed 
in rankings by TOPSIS in contrast to WSM and WPM.

This consistency across methodologies strengthens 
confidence in selecting promising candidate for MS treat-
ment and underscores the importance of employing mul-
tiple evaluation techniques to comprehensively assess the 
suitability of drug structures for MS therapy. Visual rep-
resentations of the data were presented to help readers 

Table 14  Weighted normalized of decision matrix
Alternatives ReZG1 ReZG2 SO ABC mMsde ISDD
Cladribine 0.960174 0.562597 0.919653 0.883396 0.959683 0.933887
Teriflunomide 0.963467 0.639713 0.931597 0.894653 0.958028 0.908764
Mitoxantrone 0.937956 0.443829 0.889266 0.736609 0.986663 0.984147
Masitinib 0.922097 0.405791 0.876481 0.796915 1 1
Fingolimod 1 1 1 1 0.911021 0.851356
Dimethyl Fumarate 0.954109 0.599763 0.928196 0.978925 0.959507 0.933514
Laquinimood 0.943634 0.494406 0.903208 0.846945 0.969275 0.94647
Diroximel Fumarate 0.963467 0.64325 0.938862 0.899044 0.95124 0.91707
Siponimod 0.922913 0.420155 0.878412 0.8017 0.999669 0.99087
Ozanimod 0.932803 0.446911 0.890158 0.822075 0.986282 0.981054
Ponesimod 0.929926 0.455881 0.892292 0.821258 0.987486 0.9796
Cyclophosphamide 0.978921 0.733626 0.958482 0.937224 0.932959 0.896284

Table 15  Ranking alternatives
Alternatives Preference Score Rank
Cladribine 0.393323 6
Teriflunomide 0.447233 5
Mitoxantrone 0.264786 11
Masitinib 0.261356 12
Fingolimod 0.775603 1
Dimethyl Fumarate 0.465731 3
Laquinimood 0.327404 7
Diroximel Fumarate 0.456343 4
Siponimod 0.270491 10
Ozanimod 0.295177 9
Ponesimod 0.300515 8
Cyclophosphamide 0.539458 2
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comprehend the topology of these chemical compound 
structures in the context of MS therapy.

Future research may explore distance-based indices 
and cubic regression models, as well as conduct compar-
ative analyses to enhance predictive modeling strategies. 
Integrating quantum mechanical methods and machine 
learning with QSPR modeling may also provide valuable 
outcomes. Nonetheless, some limitations may impact the 
outcomes, particularly the relatively small dataset and 
constraints on data availability.
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