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design (CADD) application, which can rapidly iden-
tify potential molecules from millions of compounds 
[3]. There are two main virtual screening approaches: 
ligand-based virtual screening (LBVS) and structure-
based virtual screening (SBVS) [4]. LBVS relies on known 
information about ligands, such as structures, chemi-
cal properties or their combination, to predict binding 
force based on the premise that similar ligands are likely 
to bind to similar targets [5]. SBVS commonly employs 
molecular docking, initiating with the generation of 3D 
conformations. As documented in various research arti-
cles, innovative ligands have been identified for specific 
drug targets through the application of molecular dock-
ing technology [6–10]. Generally speaking, the evalua-
tion of molecular docking results is traditionally carried 

Introduction
The process of discovering drugs is costly and time-
consuming, often requiring 10–15 years before a drug 
reaches the commercial market [1]. Owing to their cost-
effectiveness and the ability to rapidly produce results, 
various computer-aided methods have been suggested 
and implemented in the process of lead discovery and 
drug design [2]. Among these methods, virtual screen-
ing (VS) has emerged as a crucial computer aided drug 
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Abstract
To enhance the accuracy of virtual screening for bromodomain-containing protein 4 (BRD4) inhibitors, two docking 
protocols and seven scoring functions were compared. A total of 73 crystal structures of BRD4 (BD1) complexes 
were selected for analysis. Firstly, docking was carried out using both the LibDock and CDOCKER methods. The 
CDOCKER protocol was shown to be more effective based on the root mean square deviation (RMSD) values (in 
Å) between the docking positions and the co-crystal structures, achieving a docking accuracy rate of 86.3%. Then, 
among the various scoring functions (LigScore1, LigScore2, PLP1, PLP2, PMF, PMF04 and Ludi3), PMF showed the 
highest correlation with inhibition constants (r2 = 0.614), while Ludi3 scored lowest (r2 = 0.266). Finally, using ligand 
descriptors from PubChem, a strong correlation (r2 > 0.5) with inhibition constants for heavy atom count was found. 
Based on these comprehensive evaluations, the PMF scoring function emerged as the best tool for docking-based 
virtual screening of potential BRD4 (BD1) inhibitors. And the correlation between molecular properties and BRD4 
(BD1) ligands also provided information for future design strategies.
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out using classical scoring functions to gauge their poten-
tial effectiveness [11]. Primary challenges faced by all 
docking methods encompass dealing with the flexibility 
of molecules and providing an accurate representation of 
actual binding interactions. Undoubtedly, the precision 
of these scoring functions has a significant impact on the 
outcome and reliability of molecular docking studies and 
has been the subject of extensive research [12, 13].

BRD4 recognizes and binds to acetylated lysine resi-
dues on histones, recruiting chromatin regulatory pro-
teins and transcription factors [14, 15]. It regulates 
various cellular processes such as cell cycle, proliferation, 
and apoptosis, thereby controlling inflammation, viral 
infections, cancer and others [16]. It contains two N-ter-
minal bromodomains (BD1 and BD2), an ET domain 
and a C-terminal domain (CTD) [17]. The two bromo-
domains of the BRD4 protein share over 90% sequence 
identity and both contain a conserved KAc binding 
pocket [18]. Specific residues in the BD1 binding pocket 
include Gln85, Lys141, Asp144, and Ile146, while spe-
cific residues in BD2 include Lys374, Pro430, His433, and 
Val435 [19]. The BD1 binding pocket is larger and exhib-
its changes in polarity and hydrophobicity compared to 
BD2 [20]. Studies have shown that both BD1 and BD2 
contribute to the rapid induction of gene expression fol-
lowing inflammatory stimuli. Besides, BD1 plays a criti-
cal role in steady-state gene expression [21]. BRD4 (BD1) 
inhibitors and pan-BRD4 inhibitors exhibit similar effects 
in tumor models, while BRD4 (BD2) inhibitors have lim-
ited efficacy in tumors and are only effective in models 
of inflammation and autoimmune diseases [22]. Clini-
cal application of pan-BRD4 inhibitors has shown side 
effects such as thrombocytopenia, testicular toxicity, and 
gastrointestinal toxicity [23, 24]. Consequently, develop-
ment of low-toxicity BD1 selective inhibitors is of great 
significance for reducing drug side effects [25].

Recent studies have highlighted advancements in the 
application of computational methods in the discovery 
of novel inhibitors targeting BRD4. For instance, Zhong 
et al. successfully identified a promising BRD4 inhibi-
tory compound, SQ-1, which exhibited an IC50 value of 
676 nM, using SBVS strategies [26]. In another study, 
the SuperDRUG2 database, which comprised more than 
4,600 pharmacologically active compounds, underwent a 
virtual screening process against the BRD4 (BD1) bind-
ing site, employing both molecular docking and molecu-
lar dynamics simulations to evaluate interactions [27]. 
Furthermore, Allen et al. developed a virtual screening 
workflow aimed at identifying potent inhibitors of BRD4 
(BD1), resulting in the identification of N-[3-(2-oxo-
pyrrolidinyl) phenyl]-benzenesulfonamide derivatives as 
potential lead compounds [28].

In our research, the primary objective was to identify 
novel inhibitors for BRD4 (BD1) through the application 

of docking-based virtual screening techniques. Hence, 
before initiating a large-scale screening of the database, 
we initially evaluated two distinct molecular docking 
methodologies along with seven different scoring func-
tions to ensure the reliability and effectiveness of the 
screening process prior [29]. By correlating these in 
silico molecular properties with the inhibition potency, 
we aimed not only to identify potential inhibitory com-
pounds but also to gain insights into the molecular 
structures that contributed to effective BRD4 (BD1) 
inhibitions. This preparatory phase was crucial for opti-
mizing our screening protocol to efficiently identify 
promising BRD4 (BD1) inhibitors.

Methods
Crystal structures of BRD4 (BD1) complexes
The RCSB Protein Data Bank (https://www.rcsb.org/) 
serves as the US data center for the global protein data-
base. This database stores 3D structural data of large bio-
logical molecules, which are crucial for research in areas 
like fundamental biology, health, energy, and biotechnol-
ogy [30]. In this work, 177 crystal structures of human 
BRD4 (BD1) complexes were downloaded from this web-
site. Considering the resolution of crystal structure (≤ 2.5 
Å), biological activities (expressed as IC50 or Ki values), 
diversity of ligand structures, completeness of protein 
chain structures and others, we ultimately retained 73 
complexes for further analysis. Table S1 provided detailed 
information about them. In cases where the structures 
were dimers or tetramers, only monomer A was chosen 
for subsequent analysis [31]. The duplicate protein chains 
were deleted, and the corresponding ligand was extracted 
from the crystal structure and saved for future use. The 
Protein Preparation module in the Discovery Studio 2019 
(hereinafter referred to “DS 2019”) software was used 
to solve potential problems in the protein structure. By 
inputting protein into module, tasks such as inserting 
missing atoms in incomplete residues, modeling missing 
loop regions, deleting alternate or disorder conforma-
tions, standardizing atom names, and generating the pro-
tonation state at pH 7.0 were performed [32, 33].

To more effectively analyze the differences across the 73 
BRD4 (BD1) crystal structures, we aligned all structures 
utilizing the Align Sequences and Structures module 
within the DS 2019 software. The overlay of the crystal 
structures and comparison of amino acid sequences were 
shown in Fig. 1. High consistency among the 73 crystal 
structures, including a well-defined binding pocket was 
revealed. Owing to the induced-fit theory, protein struc-
tures underwent conformational changes upon ligand 
binding. Consequently, minor conformational variations 
were observed across the 73 co-crystalized structures.

https://www.rcsb.org/
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Preparation of ligands
The biology activities of 73 inhibitors in the crystal struc-
tures of BRD4 (BD1) complexes were obtained from lit-
eratures (Table S2). And all of them were expressed as 
IC50 values, except for 6RX (PDB ID: 5KDH) expressed 
as Ki value [34]. The IC50 or Ki values spanned seven 
orders of magnitude (10^-10-10^-4 M) and were further 
converted into pIC50 or pKi using the formula pIC50= -log 
IC50 (pKi= -log Ki). Distribution of pIC50 (pKi) values was 

shown in Fig.  2. Prior to docking, the ligand structures 
from the BRD4 (BD1) complexes were saved in a separate 
SD file, and the CHARMm force field was applied.

Molecular docking
Molecular docking plays a vital role in drug discov-
ery, enabling the prediction of how specific molecules 
will bind to a target. This research utilized two docking 
methods, LibDock and CDOCKER within DS 2019, to 

Fig. 2 Distribution of pIC50 (pKi) values of the studied ligands. Every ligand was labelled with an alphanumeric code sourced from the PDB. The X-axis 
represented the ligand ID. The Y-axis represented their pIC50 (pKi) values

 

Fig. 1 Overlay of 73 BRD4 (BD1) crystal structures. The red sphere represented binding site. The red dot in binding site represented water molecules
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replicate the binding positions of ligands found in crystal 
structures. LibDock used a grid placed within the binding 
site and probed to calculate hotspots for the protein. It 
was a rigid-based docking module [35]. The CDOCKER 
module employed the CHARMm flexible docking pro-
gram, in which, the receptor remained fixed, and the 
ligands were permitted flexibility during refinement [36]. 
The accuracy of the docking process was evaluated using 
the root mean square deviation (RMSD) values (in Å) 
between the optimal redocked positions of the ligands 
and their conformations in co-crystal structures.

The ligand YF2 (PDB ID: 6P05) with the pIC50 value 
of 9.23 was chosen to define the active site and the 
radius of the spherical box was set to 9 Å [37]. Of note, 
water molecules in active site were kept in their origi-
nal state because they could stabilize a complex by act-
ing as a bridge for hydrogen bonds [38–41]. In the 
LibDock module, conformations were generated using 
the Best method. A limit of 255 maximum conforma-
tions was established, along with an energy threshold of 
20 kcal⋅mol-1, to produce a set of low-energy conforma-
tions for each ligand. The setting for Max Hits to Save 
was configured to 1, while all other parameters were left 
at their default values.

In the CDOCKER module, the Top Hits was set to 1, 
with a Pose Cluster Radius defined at 0.5, while the rest 
of the settings remained at their default values. This 
configuration ensured that only the best docking pose 
for each molecule was noted and preserved for addi-
tional examination. These 73 active molecules were then 
re-docked into the active site of BRD4 (BD1), followed 
by the calculation of RMSD values. For the purpose of 
virtual screening, RMSD values at or below 2.0 Å were 
considered satisfactory [42]. Consequently, in this study, 
docking results yielding RMSD values of 2.0 Å or less 
were deemed successful, whereas those with RMSD val-
ues exceeding 2.0 Å were regarded as unsuccessful.

Scoring functions
The scoring of ligands was conducted via the Score 
Ligand Poses module in DS 2019 software. The utilized 
scoring functions were LigScore1, LigScore2, PLP1, 
PLP2, PMF, PMF04 and Ludi Energy Estimate 3 (Ludi3). 
The scores were reported as positive values, where higher 
scores denoted stronger binding affinity. Correlation was 
then established between the score of each ligand and its 
corresponding pIC50 (pKi) value.

In silico molecular properties of ligands
PubChem database (https:/ /pubche m.ncbi. nlm. nih.
gov/) is the most comprehensive source of chemical data 
freely accessible to users worldwide. It contains informa-
tion on the chemical structures, bioactivity, health and 
safety data, spectra data, and other relevant chemical 

information [43]. In this study, the database was uti-
lized to analyze in silico molecular properties for ligands 
obtained from BRD4 (BD1) complexes. Seven molecular 
properties included complexity, hydrogen bond acceptor 
count, hydrogen bond donor count, molecular weight, 
rotatable bond count, topological polar surface area 
and total number of heavy atoms were collected. These 
descriptors were detailed in the Computed Proper-
ties section, which fell under the Chemical and Physical 
Properties heading. In addition, considering the π-π or 
cation-π interactions formed between the sp²-hybridized 
atoms in the ligand and amino acid residues during dock-
ing, three additional descriptors were introduced: the 
total count of sp²-hybridized carbons in the ligand, their 
proportion, and the total atom count.

Molecular dynamic simulation
To investigate the stability of interactions between BRD4 
(BD1) with inhibitors, molecular dynamics (MD) simu-
lation was conducted using GROMACS 2018 software 
[44]. The CHARMM36 force field was utilized to con-
struct the topology of the BRD4 protein [45]. Ligand 
topology and coordinates were devised through the 
CGenFF server (https://cgenff.com/). A 10 Å cubical 
box was constructed, and the simple point charge water 
model (SPC216) was utilized for solvation purposes [46]. 
Charge neutrality was then achieved by the addition of 
appropriate Na+ and Cl- ions using the genion tool. Sub-
sequently, an energy minimization process was carried 
out by applying the steepest descent method, followed by 
the implementation of positional restraints on the ligands 
[47]. The systems underwent equilibration in both the 
NVT (constant number of particles, volume, and temper-
ature) ensemble for 500 ps and the NPT (constant num-
ber of particles, pressure, and temperature) ensemble 
for 1000 ps, sustaining conditions at 300 K and an atmo-
spheric pressure of 1.0 bar. Finally, 30 ns MD simulation 
was performed for each system.

Results and discussions
Assessment of docking methods
In the virtual screening process, effectively docking 
ligands to the active site is a crucial step. This study 
employed the Libdock and CDOCKER programs to 
determine the most effective docking technique for BRD4 
(BD1) while assessing how accurately they predicted the 
ligand-binding positions. For this purpose, 73 known 
BRD4 (BD1) inhibitors were redocked into their respec-
tive binding pockets. Only the highest-scoring redocked 
pose for each ligand was selected to represent its poten-
tial active conformation. The RMSD values between 
top-scoring redocked poses and the conformations in 
co-crystal structures were calculated and presented in 
Table 1. The evaluation results revealed that the number 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://cgenff.com/
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of RMSD values greater than 2.0 Å was 25 for the Lib-
dock algorithm and 10 for the CDOCKER algorithm. The 
accuracy of the former (65.8%) was significantly lower 
than that of the latter (86.3%). As a result of comparisons 
and evaluations, CDOCKER program offered superior 
reliability which was chosen as the docking method for 
the next phase of our study.

Assessment of scoring functions
73 BRD4 (BD1) complexes had different ligands which 
encompassed a wide range of inhibition constant val-
ues (IC50 or Ki). 7 scoring functions were evaluated and 
the generated scores were compared to the correspond-
ing pIC50 (pKi) values of ligands. Correlation analysis 

was performed with respective pIC50 (pKi) values using 
a linear regression model in GraphPad Prism 9.3.0 soft-
ware. Detailed calculated scores for various scoring func-
tions could be found in Table S3. Table  2 displayed the 
correlation coefficients between the kinetic data and the 
calculated scores for various scoring functions. Figure 3 
showed corresponding linear curves.

The slope and the Y-intercept of the regression line 
for each scoring function suggested the strength and 
the extent of bias in predictions, respectively. The Lig-
Score1 function had a slope of 0.373, coupled with a 
Y-intercept of 0.248, while LigScore2 displayed a slightly 
steeper slope of 0.386 with a considerably higher Y-inter-
cept value of 2.818. Comparatively, PLP1 and PLP2 both 

Table 1 RMSD values (in Å) between top-scoring redocked poses of ligands and the conformations in co-crystal structures
No. PDB ID Ligand ID RMSD No. PDB ID Ligand ID RMSD

Libdock CDOCKER Libdock CDOCKER
1 7MCF YX4 0.9047 0.8375 38 6G0F EGH 4.5449 0.8143
2 5S9Q YW7 0.8704 0.6155 39 5Z1T EFN 3.3083 1.7072
3 5S9R YWA 1.7645 0.6718 40 5Z1S EFM 3.5639 1.0526
4 7MCE YWY 0.8682 1.4496 41 5CY9 E0A 3.4178 0.5237
5 6C7R EO4 1.0087 0.6521 42 5WUU 7UU 1.8799 0.3224
6 5S9P YW4 1.6680 0.6704 43 6KEJ D7F 1.7758 0.4833
7 6P05 YF2 0.5825 0.3266 44 6KEC D9C 0.5505 5.7613
8 5WMD 6JE 6.9327 7.6078 45 6KEK D7L 0.7637 0.2782
9 5YOU 8XX 0.7065 0.2930 46 5CRM EB5 0.3751 0.6909
10 4Z1Q 558 0.7620 0.6448 47 5CQT EB3 0.5948 1.2743
11 2YEL WSH 0.5878 0.3512 48 5CP5 EB0 0.3553 4.0236
12 3ZYU 1GH 1.0782 0.4566 49 4HBX 14X 0.8503 0.7749
13 6Z7L QAN 0.4772 0.8155 50 5Z1R EFL 6.3200 0.3390
14 4O74 R78 3.0226 1.1615 51 5CS8 EB8 2.4308 0.2646
15 4YH3 Y80 2.0716 0.6580 52 4O77 2RE 3.9245 0.7238
16 5HLS 62G 5.4749 1.5317 53 5EIS 5OU 0.5423 3.1488
17 4UIX TVU 1.9849 1.7496 54 4HBY 13F 3.9149 1.6884
18 5XI2 8F9 0.7532 0.4788 55 4MEP 24Y 0.7725 1.2295
19 6TPY NUB 0.6216 1.7369 56 4HBW 14Z 0.3210 0.6181
20 7RXS 7ZT 6.5533 0.5719 57 5A85 78J 0.9595 0.6540
21 4O76 1M3 3.9669 7.9171 58 6G0D LY2 0.7482 0.7854
22 6WGX U0D 1.2473 0.9142 59 6G0E EGN 11.0476 6.6573
23 7RXR 7ZB 1.1272 0.7151 60 4O7E 2RN 1.5345 1.4118
24 4E96 0NS 0.5854 2.7171 61 5H21 RMR 6.1577 1.7493
25 7RXT 7ZK 6.5655 2.4482 62 5TI7 7CQ 0.5951 0.3244
26 4PS5 2TA 7.4291 1.6322 63 4O71 CPB 0.4745 0.4255
27 4 X2I 3 X0 2.3245 0.4755 64 5TI6 7CO 1.0976 0.4608
28 5KDH 6RX 0.7139 0.3961 65 4HBV 15E 0.2979 0.3722
29 4J0S 1H3 0.3800 1.7730 66 4LR6 1XA 0.6977 0.6313
30 6 X7D UT4 1.6201 0.7117 67 6VUJ RLY 7.4134 0.9243
31 6KEH D6R 0.3750 0.3513 68 5TI5 7CN 6.0981 0.2574
32 6KEI D6U 0.7488 1.3213 69 4MEO 25V 1.8122 6.1837
33 5DX4 E0C 7.4228 0.1956 70 5TI3 7CG 2.7128 1.9576
34 5HM0 62V 0.5803 0.2830 71 6VUC RLS 0.9794 0.3275
35 5CPE EB2 0.5879 1.1941 72 6VUF RLV 2.0484 0.8595
36 5CRZ EB7 1.0030 2.6173 73 6VUB RLG 0.6289 0.6879
37 5I88 69G 3.0581 0.9608
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Table 2 Correlation of scores with kinetic data pIC50 (pKi) for 73 known inhibitors
Scoring 
function

Slope* Y-intercept* R square** F value Residuals
(D’Agostino-Pearson)

P value
(D’Agostino-Pearson)

Mean of 
residuals 
(%)

SD*** 
of re-
siduals 
(%)

LigScore1 0.373 ± 0.07 0.248 ± 0.451 0.285 28.29 16.71 0.0002 -7.121 3.169
LigScore2 0.386 ± 0.041 2.818 ± 0.263 0.557 89.19 6.99 0.030 -0.682 0.969
PLP1 8.999 ± 1.031 26.25 ± 6.628 0.518 76.23 21 < 0.0001 -1.762 1.543
PLP2 8.011 ± 1.056 28.29 ± 6.791 0.448 57.55 21.07 < 0.0001 -1.993 1.630
PMF 10.22 ± 0.962 16.76 ± 6.183 0.614 113.1 2.136 0.344 -1.851 1.796
PMF04 6.279 ± 0.743 -5.165 ± 4.775 0.502 71.51 2.865 0.239 -6.303 3.442
Ludi3 44.43 ± 8.761 292.1 ± 56.34 0.266 25.72 2.01 0.366 -3.120 2.168
* Best-fit value ± SE
**p < 0.0001
*** Standard deviation

Fig. 3 Linear curves between pIC50 (pKi) and calculated scores
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exhibited significantly larger slopes, 8.999 and 8.011, 
respectively, accompanied by sizeable Y-intercept values 
(PLP1: 26.25, PLP2: 28.29). PMF demonstrated a slope 
of 10.22 and a Y-intercept of 16.76. PMF04 had a slope 
of 6.279 and a negative Y-intercept of -5.165. The Ludi 3 
scoring function presented with the largest slope among 
all scoring functions, 44.43, and a Y-intercept of 292.1. 
At the same time, in the context of predicting molecular 
affinities, an ordinate standard error (SE) served as a vital 
indicator, revealing the magnitude of prediction inaccu-
racies or errors. Specifically, a lower SE value signified a 
higher precision in the predicted affinity values. In this 
analysis, the error for the Ligscore2 scoring function was 
notably low, at 0.263, indicating satisfactory predictive 
accuracy. This significantly contrasted with the results 
from other scoring functions like PLP1, PLP2, PMF, and 
Ludi3, where the errors significantly exceeded 5.

The r-squared (r2) value in linear regression indicated 
how well the data fitted the regression line, with val-
ues closer to 1 suggesting a better fit. In Fig. 4, r2 values 
between predicted and observed binding affinities ranged 
from 0.266 to 0.614. The PMF scoring function showed 
the highest r2 value (0.614), suggesting the best predic-
tive capability within the dataset. Interestingly, despite 
being developed using a sample size approximately ten 
times smaller than PMF04, PMF outperformed PMF04. 
This underscored the utility of smaller, diverse datasets 
for robust structure-activity insights. LigScore2 followed 
with an r2 value of 0.557. Conversely, the Ludi3 scor-
ing function displayed the lowest r2 value (0.266), which 
might indicated the least predictive power in this group. 
F values from the analysis of variance (ANOVA) tests, 
which assessed the significance of regression models, 
ranged from 25.72 to 113.1. Higher values indicated the 
model accounts for a substantial proportion of the vari-
ability. In line with the obtained r2 values, PMF scored 

the highest F value (113.1), LigScore2 ranked second, 
while Ludi3 had the lowest (25.72). These results sug-
gested a better statistically significant fit for PMF and 
Ligscore2 compared to other models.

Fig.  5 presented QQ plots that compared predicted 
residuals against actual residuals for the scoring func-
tions under analysis. To ensure a fair comparison 
between scoring functions, all residuals were normal-
ized to percentage values of each score before conduct-
ing cross-function residual analysis. This process ensured 
that differences in absolute scores across functions did 
not distort the comparison. In this normalized frame-
work, the mean of the residuals, represented as percent-
ages, indicated the average variance from the expected 
values based on the linear regression model. What’s 
more, the standard error of these normalized residuals 
indicated how spread out the data points were around the 
regression line. Analysis of the residuals reflected the dif-
ferences between observed and predicted binding affini-
ties. The results revealed standard deviation (SD) values 
ranging from 0.969 to 3.442, with LigScore2 and PMF04 
displaying the lowest and highest SD values, respectively. 
Greater predictive accuracy and consistency were indi-
cated by a lower SD value, while the mean of the residu-
als varied among scoring functions, suggesting differing 
levels of systematic bias in their predictions. Specifically, 
this variation ranged from as low as -0.682 for LigScore2 
to -7.121 for LigScore1.

To check normal distribution of residuals, the 
D’Agostino-Pearson omnibus normality test was per-
formed on the limited dataset. The standard for normal-
ity at p value was set less than 0.05. Indeed, among the 
scoring functions assessed, only PMF, PMF04, and Ludi3 
successfully met the criteria of the normality test. Oth-
ers fell outside the bounds of this standard and hence 
did not substantiate the normality hypothesis. This 

Fig. 4 Ranking of scoring functions based on coefficient of determination (r2) (A) and F value (B)
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non-normality in residuals could have implications for 
the reliability and the predictive power of these scoring 
models. Overall, the different scoring functions dem-
onstrated a spectrum of predictiveness and precision. 
Notably, PMF stood out for its stronger correlation with 
experimental data, which was evidenced by higher r2 val-
ues, lower mean and standard error of residuals.

Assessment of in silico molecular properties
According to the ligand ID, molecular properties of 73 
inhibitors were obtained from PubChem database. Three 
extra parameters were extracted using DS2019 software: 

the total count and fractional number of sp2 hybridized 
atoms, as well as the total atom count. The data corre-
lation and calculation of the SE values were conducted 
utilizing the linear regression model in GraphPad Prism 
software (version 9.3.0.). Detailed parameters of molecu-
lar properties could be seen in Table S4. Then, linear cor-
relations between pIC50 (pKi) and molecular properties 
were presented in Table 3 (cf. Fig. S1). Subsequently, QQ 
plots, similar to those mentioned earlier, were created to 
examine the predicted versus actual residuals for in silico 
molecular properties, as illustrated in Fig. S2.

Fig. 5 QQ plot between actual and predicted residual values for calculated scores
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Higher r2 values correlated with several key molecular 
features, including the total number of atoms, the num-
ber of sp2 hybridized atoms, molecular complexity, and 
the heavy atom count. These parameters were somewhat 
connected. The total number of atoms encompassed 
both heavy and hydrogen atoms. Whereas, the number 
of sp2 hybridized atoms captured the planar, unsaturated 
features such as double bonds and aromatic rings, con-
tributing to the molecule’s complexity which arose from 
various structural elements including rings, bonds, and 
stereochemistry. Together, these factors interplayed to 
define the molecular size, shape, complexity, and poten-
tial reactivity.

The highest correlation was observed in the number of 
heavy atoms, reflected by an r2 value exceeding 0.5 and an 
F statistic near 85. Ranking second in correlation was the 
number of sp2 hybridized atoms, with an r2 value of 0.489, 
which was slightly outperformed by the number of atoms 
with an r2 of 0.475. The results indicated a preference of 
BRD4 (BD1) for larger ligands, characterized by a higher 
count of heavy atoms and a significant presence of non-
saturated or aromatic bonds. This preference was attrib-
uted to the large number of aromatic residues within the 
BRD4 (BD1) active site, which stabilized ligands through 
diverse π-π or π-cation interactions. Conversely, the frac-
tion of sp2 hybridized atoms was unexpectedly the least 
correlating parameter, with an r2 value only of 0.000897. 
This indicated that, although the presence of sp2 hybrid-
ized atoms was advantageous, the overall size or the 
absolute number of atoms in a ligand was more impor-
tant. The complexity parameter (r2 = 0.435, F = 54.71) 
showed notable but slightly lower correlation than both 
the number of heavy atoms and sp2 hybridized atoms. 
What’s more, molecular weight showed moderate cor-
relation (r2 = 0.35, F = 38.2), which was depended on the 
total number of atoms and was associated with the count 
of heavy atoms.

Five parameters, including the number of hydrogen 
bond acceptor, topological polar surface area (TPSA), 
the number of rotatable bonds (R_bonds) and the num-
ber of hydrogen bond donor, yielded an r2 value below 0.2 
despite their significance in assessing ligand druggability. 
The above introduced fraction of sp2 hybridized atoms 
was also included in this study. Specifically, the relative 
count of hydrogen bond acceptors correlated weakly with 
the observed data, as evidenced by a low r2 value of 0.153 
(F = 12.78). For ligands such as 1M3, U0D and 2TA, the 
number of hydrogen bond acceptors was identified to 
be 9, whereas it was found to be only 1 for ligands 15E 
and RLG. Another parameter TPSA, which measured the 
polar region on a molecular surface dominated by oxygen 
and nitrogen, offered insights into the drug-like attributes 
of a molecule, such as absorption and permeability, thus 
facilitating pharmacokinetic and drug delivery evalua-
tions. Notably, TPSA showed a modest correlation with 
an r2 value of 0.122 (F = 9.857). For example, ligand TVU 
from structure 4UIX exhibited the highest TPSA value 
of 139 Å, correlating with a moderate pIC50 of 7.3, while 
RLG from structure 6VUB showed a TPSA of 20.3 Å, 
coinciding with the lowest pIC50 of 3.4. Generally, mole-
cules with a TPSA over 140 Å squared displayed poor cell 
membrane permeation, while those with a TPSA under 
90 Å squared were typically necessary for penetration of 
the blood-brain barrier to affect central nervous system 
targets.

Molecular interaction analysis
Analysis of protein-ligand interactions also gave insight 
into how BRD4 (BD1) interacted with inhibitors and pro-
vided guidance for the design of new BRD4 (BD1) inhibi-
tors. We selected the top ten compounds (IC50 ≤ 15 nM) 
for research by using CDOCKER protocol. To do this, 
ligand coordinates were extracted from their original 
crystal structures, and re-docked into their correspond-
ing crystal structure of BRD4 (BD1). The binding modes 

Table 3 Correlation of molecular properties with kinetic data pIC50 (pKi) for 73 known inhibitors
Molecular property Slope* Y-intercept* R square** F value Residuals

(D’Agostino-Pearson)
P value
(D’Agostino-Pearson)

Total number of atoms 6.652 ± 0.831 6.069 ± 5.342 0.475 64.12 12.25 0.002
M W 40.41 ± 6.538 137.4 ± 42.05 0.35 38.2 3.837 0.144
N sp2 Atoms 2.349 ± 0.285 4.571 ± 1.833 0.489 67.91 5.118 0.077
Fraction sp2 Atoms -0.00265 ± 0.0105 0.736 ± 0.068 0.000897 0.064 2.315 0.314
H_donor 0.118 ± 0.073 0.465 ± 0.472 0.035 2.567 3.94 0.139
H_Acceptor 0.495 ± 0.139 1.719 ± 0.891 0.153 12.78 2.979 0.226
R_bonds 0.424 ± 0.171 1.524 ± 1.099 0.08 6.148 10.9 0.004
Complexity 79.52 ± 10.75 94.24 ± 69.14 0.435 54.71 0.194 0.908
Top. Polar Surface Area 6.177 ± 1.967 37.76 ± 12.65 0.122 9.857 0.00994 0.995
Heavy Atom Count 3.497 ± 0.381 5.219 ± 2.449 0.543 84.28 2.474 0.290
*Best-fit value ± SE
**p < 0.0001



Page 10 of 13Dong and Hao BMC Chemistry          (2024) 18:247 

of the ligands in the crystal structures were shown in 
Fig. S3 and the interactions were summarized in Table 
S5. Hydrogen bond, van der Waals interaction, pi-alkyl 
interaction, and alkyl interaction were observed in all 
molecules. Some compounds also had pi-pi T shaped or 
pi-pi stacked interaction, pi-sigma or pi-sulfur interac-
tion, carbon hydrogen bond, water hydrogen bond, and 
halogen interaction. It was worth noting that the hydro-
gen bond formed by the ligands with the key amino acid 
Asn140 could be observed in different PDB entries. The 
non-bonded interactions between inhibitors and the 
WPF shelf consisting of Trp81, Pro82 and Phe83 or other 
ZA channel region were also shown in the interaction 
diagrams.

Among them, ligand YF2 in crystal structure 6P05 
was used as example to detailed analyze its protein-
ligand interactions. The 2D and 3D binding interac-
tions between YF2 with BRD4 (BD1) were shown in 
Fig.  6A and B. The amide moiety of pyrrolopyridone 
scaffold formed a bidentate hydrogen-bonding interac-
tion with amino acid residue Asn140. And pyrrolopyri-
done scaffold also formed pi-pi T shaped interaction 
with Phe83 and Tyr97. The sulfonamide moiety induced 
a hydrogen-bond network with the ZA loop, involving 
residues Asp88 and Lys91. The second pyridine ring of 
YF2 formed pi-alkyl interaction with Leu92 and formed 
hydrophobic interaction with Leu94. Additional pi-sulfur 
interaction between the first pyridine ring and Met149 
was also observed. Similar to mentioned above, YF2 also 
had multiple non-bonded interactions with BRD4 (BD1). 
These interactions were consistent with experimen-
tal interaction reported in the literature [37]. Of note, 
the consistency of the interaction results could also be 
explained by the re-docked poses. As shown in Fig. 6C, 
yellow sticks represented the crystallographic pose, and 

blue sticks represented the redocked pose. The skeleton 
of YF2 was basically overlapped and a slight deviation in 
the branched chain was revealed. A low RMSD (0.3266 
Å) suggested that the redocked ligand assumed a pose 
that was very close to its experimentally determined 
position, pointing towards the reliability of the docking 
parameters and algorithms used.

MD simulation
To explore the binding stability of inhibitor YF2 to the 
active site of BRD4 (BD1), the initial docking posi-
tion of YF2 was set as the starting point for 30 ns MD 
simulation. Typically, the RMSD of the backbone atoms 
within a complex was a good indicator of its stability 
over time. A lower RMSD suggested a more stable sys-
tem [48]. As depicted in Fig.  7A, both the free protein 
and BRD4 (BD1)-YF2 complex maintained RMSD val-
ues below 0.30 nm during the 30 ns period. Specifically, 
the RMSD of the free protein system oscillated from 
0.15 to 0.225 nm after 15 ns, whereas the RMSD of the 
BRD4 (BD1)-YF2 complex exhibited fluctuations within 
the range of 0.15 to 0.25 nm after 11 ns of the simulation. 
The average RMSD vales for the free protein and BRD4 
(BD1)-YF2 systems measured throughout the entire 
simulation were 0.1896 nm and 0.1901 nm, respectively. 
These minor fluctuations and the overall low RMSD 
values suggested that the inhibitor-bound protein back-
bones remained stable relative to their initial structures.

The RMSF values for the residues in the stabilized sys-
tems were then analyzed. The RMSF values signified the 
extent of variability for each amino acid residue after 
inhibitor binding. Higher RMSF scores suggested greater 
fluctuations [49]. Figure 7B showed that the RMSF values 
for all residues were below 0.30 nm except for the N-ter-
minal and C-terminal of BRD4 (BD1). This suggested that 

Fig. 6 (A) 2D binding mode of BRD4 (BD1) (PDB: 6P05) with inhibitor YF2; (B) 3D binding mode of BRD4 (BD1) with inhibitor YF2; (C) The CDOCKER dock-
ing mode of inhibitor YF2 to BRD4 (BD1). Yellow: the crystallographic pose; Blue: the redocked pose
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the proteins within both systems demonstrated a low-
flexibility state. The RMSF plot (referenced as Fig.  7C) 
distinctly illustrated that the key residues (Trp81, Pro82, 
Phe83, Tyr97, and Asn140) in BRD4 (BD1)-YF2 complex 
displayed less fluctuation compared to the unbound pro-
tein. The results indicated that stable interactions were 
formed between the protein structure and inhibitor YF2 
and aligned with the previous findings from molecular 
docking studies.

Conclusions
In this study, docking methods, scoring functions and 
in silico molecular properties were assessed on a test 
set of 73 BRD4 (BD1) protein-ligand complexes. The 
CDOCKER protocol, boasting an 86.3% success rate, 
was the superior choice for BRD4 (BD1) docking, offer-
ing high reliability for medium-scale virtual screening 
for BRD4 (BD1) inhibitors. Correlation analysis between 
various scoring functions: LigScore1, LigScore2, PLP1, 
PLP2, PMF, PMF04, and Ludi3 with inhibition constants 
of ligands identified PMF as the top performer, with an 
r2 value of 0.614. These results highlighted the efficacy 
of scoring functions in docking based virtual screening 
and deepened understanding of the structure-activity 

relationships in BRD4 (BD1) drug designing. In silico 
correlation analysis linked specific molecular properties 
to BRD4 (BD1) ligand affinity, informing future design 
strategies. The methodologies introduced in this research 
held potential for broader application across various 
macromolecules, facilitating the exploration and devel-
opment of novel ligands.
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