
Kotb et al. BMC Chemistry          (2024) 18:235  
https://doi.org/10.1186/s13065-024-01350-9

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

BMC Chemistry

Pharmacophore‑based virtual screening, 
molecular docking, and molecular dynamics 
investigation for the identification of novel, 
marine aromatase inhibitors
Mohamed A. Kotb1*, Islam Ahmed Abdelmawgood1 and Ibrahim M. Ibrahim2 

Abstract 

Breast cancer remains a leading cause of mortality among women worldwide. Our current research focuses on iden-
tifying effective therapeutic agents by targeting the human aromatase enzyme. Aromatase inhibitors (AIs) have been 
effective in treating postmenopausal breast cancer but face challenges such as drug resistance and long-term side 
effects like cognitive decline and osteoporosis. Natural products, especially from marine organisms, are emerging 
as potential sources for new drug candidates due to their structural diversity and pharmacological properties. This 
study aims to discover marine natural products capable of inhibiting human aromatase by combining ligand-based 
and structure-based pharmacophore models for virtual screening against the Comprehensive Marine Natural Prod-
ucts Database. From the initial virtual screening of more than 31,000 compounds, 1,385 marine natural products were 
identified as possible candidates. Following initial molecular docking analysis, only four compounds managed to pass 
the criteria this research has introduced to confirm strong binding affinity to aromatase. All four compounds yielded 
acceptable binding affinities, with CMPND 27987 having the highest −10.1 kcal/mol. All four hits were subjected 
to molecular dynamics, and CMPND 27987 was further confirmed to be the most stable at the protein’s active site, 
with an MM-GBSA free binding energy of −27.75 kcal/mol. Our in silico studies indicate that CMPND 27987 interacts 
effectively within the binding site of the human aromatase, maintaining high affinity and stability. Based on these 
findings, we propose that CMPND 27987 could hold significant potential for further lead optimization and drug 
development.

Keywords  Molecular docking, Pharmacophore, Virtual screening, Molecular dynamics, Aromatase, Aromatase 
inhibitors

Introduction
Female breast cancer was the main cause of global can-
cer incidence in 2020, totaling 2.3 million new cases 
and comprising 11.7% of the overall cancer burden. 
In terms of fatalities, it contributed to 685,000 deaths, 
constituting 1 in 6 cancer-related mortalities [1]. A siz-
able proportion of breast cancers are estrogen-receptor 
positive and thus are categorized as hormone-depend-
ent [2]. The dysregulated interplay between estrogens 
and estrogen receptors (ERs) within the tumor triggers 
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mitogenic signals that are strongly connected to breast 
tumor proliferation and invasion [3]. In contrast to 
premenopausal women, where the primary source of 
estrogens is ovarian synthesis, postmenopausal women, 
comprising the majority of breast cancer patients, pos-
sess estrogens that are either produced in nonovarian 
tissues or synthesized peripherally through the human 
aromatase enzyme [4]. The human aromatase enzyme 
CYP 450 (CYP19A1), a member of the cytochrome 
P450 family, is the translation product of the CYP19A1 
gene on chromosome 15. It catalyzes the rate-limiting 
and conclusive step of extra-ovarian aromatization of 
the A ring of androgen precursors, such as androsten-
edione (ASD) (Fig.  1A), to synthesize estrogens [5]. 
Two primary pharmacological strategies have been 
employed in the management of breast cancer. The 
first involves endocrine therapy, which acts through ER 
antagonism, while the second uses aromatase inhibi-
tors (AIs) that disrupt the exogenous estrogen synthesis 
through aromatase inhibition [6].

Breast cancer treatment has traditionally used endo-
crine therapy. It utilizes selective estrogen receptor mod-
ulators (SERMs), such as Tamoxifen, to impede estrogen 
binding to ERs. SERMs, acting as agonists or exerting 
estrogenic effects in other tissues, are associated with 
several side effects, including an elevated risk of throm-
boembolism and endometrial carcinoma [7].

AIs are classified into Type I (steroidal) and Type II 
(non-steroidal) inhibitors. Type I inhibitors, such as 
formestane (second generation) and exemestane (third 
generation) (Fig. 1B), mimic the structure of the natural 
steroidal substrate, binding covalently and irreversibly to 
CYP19A1. Type II inhibitors include aminoglutethimide 
(first generation), fadrozole (third generation), and the 
triazoles: vorozole (third generation), anastrozole (third 
generation), and letrozole (third generation) (Fig.  1c). 
These compounds, especially the latter three, reversibly 
coordinate the iron atom in the enzyme’s heme group 
through a heterocyclic nitrogen lone pair [8].

The inhibition of human aromatase proves to be asso-
ciated with fewer side effects compared to endocrine 
therapy, as it lacks additional estrogenic effects and has 
consistently demonstrated effectiveness in regulating the 
regression of breast tumors that depend on estrogenic 
stimulation for their development and growth. [9]. These 
findings resulted in the further development of AIs, 
which marked a breakthrough in breast cancer therapy 
[10].

AIs have been useful in postmenopausal breast can-
cer treatment, but novel drugs are needed to avoid 
drug resistance, especially in metastatic breast cancer, 
and reduce toxicity and side effects from long-term 
use [11]. Prolonged AI use can change patients’ lipid 
profiles and bone mineral density, cause osteoporosis, 

Fig. 1  The figure shows the human aromatase ligands, including (A) the co-crystalized ligand and androgen precursor androstenedione (A1), (B) 
type I inhibitors such as exemestane (third generation) (B2) and formestane (second generation) (B2), and (C), type II inhibitors aminoglutethimide 
(first generation) (C1), fadrozole (third generation) (C2), and the triazoles: vorozole (third generation) (C3),  letrozole (third generation) (C4), 
and anastrozole (third generation (C5)
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and increase the risk of musculoskeletal disorders. It 
also affects cognition by reducing estrogen’s protective 
effects on age-related memory loss. [12].

Due to their structural and pharmacological diversity, 
natural compounds have long been used in drug dis-
covery as a source of new lead candidates. [13]. As with 
terrestrial plants, fungi, and bacteria, marine organisms 
are under investigation for their pharmaceutical poten-
tial [14]. Recently discovered marine natural products 
(MNPs) have led to the development of anti-inflam-
matory, antiviral, antibacterial, and anticancer drugs. 
[15–17]. In the context of AIs, natural products have 
the potential to facilitate the transition from their cur-
rent clinical use as chemotherapeutic agents to future 
applications in breast cancer chemoprevention [18].

Molecular docking, molecular dynamics, ligand-
based and structure-based pharmacophore modeling, 
virtual screening, and other computer-aided drug 
design methods have become essential for drug design 
[19, 20]. These techniques are central for selecting 
promising lead candidates for biological testing [21].

Our study aims to identify marine natural product(s) 
capable of binding to the human aromatase enzyme 
at the active site. To accomplish this, a ligand-based 
pharmacophore model derived from a series of novel, 
non-steroidal AIs was merged with a docking-assisted 
structural-based pharmacophore model. The resulting 
pharmacophore was screened against the Comprehen-
sive Marine Natural Products Database (CMNPD), a 
manually curated open-access knowledge base spe-
cifically designed for marine natural products research 
[22] to identify natural AIs. Further confirmation was 
conducted through the employment of molecular dock-
ing and molecular dynamics studies.

Methods
Pharmacophore modeling and virtual screening.
Third-generation, non-steroidal AIs have a nitrogen-
containing heterocyclic group that directly interacts 
with Fe (II) of the heme group, preventing aromatiza-
tion. In the search for lead candidates, azaheterocycle 
pharmacophore scaffolds are becoming a more reliable 
option [23].

A comprehensive literature review identified a series of 
non-steroidal AIs with the azole group at the 3rd posi-
tion in a 2-phenyl indole scaffold (Table 1). According to 
Kang et al., the indole moiety fits in the catalytic cleft of 
the human aromatase, while the azaheterocyclic moiety 
chelates the heme group’s iron atom. Compound 6 with 
a triazole ring showed the highest anti-aromatase activ-
ity, surpassing letrozole (0.0495 μM) with an IC50 value 
of 0.0141 μM [24].

Ligand‑based pharmacophore modeling
The series of 18 compounds in Table  1 was sketched 
in MarvinSketch and saved as SDF files. The Merck 
Molecular Force Field (MMFF94) was used to minimize 
the three-dimensional coordinates of these files using 
an in-house Python script.

LigandScout 4.3 divided the series into 14 training 
compounds and 4 test compounds at random. Then, the 
program’s Conformer Generation Settings were used to 
perform a conformational analysis with the Best Set-
tings and 100 conformers.

Pharmacophore fit and atom overlap scoring function 
created the ligand-based pharmacophore. The merged 
Pharmacophore type had 2 omitted features.

Docking‑assisted structural‑based pharmacophore 
modeling.
Compound 6 was used to build a structural-based 
pharmacophore model using molecular docking. This 
method was chosen because non-steroidal aromatase 
inhibitor binding interactions are not crystallographi-
cally documented.

The interaction of Type II AIs, including letrozole, 
with aromatase leads to a notable bathochromic shift in 
the Soret UV band when compared to Type I inhibitors 
[25, 26]. This shift may be caused by the coordination 
of the heme iron with a heteroatom (N, S, O, S-), such 
as letrozole’s triazolic ring nitrogen. In their molecu-
lar docking study, Galeazzi and Massaccesi found 
two letrozole poses with CYP19A1. The first pose had 
higher binding energy and had the triazole ring away 
from the heme center, while the second had the azahet-
erocyclic ring toward it. Despite having lower binding 
energy, the second pose matched UV-absorption spec-
trum data, which the pair confirmed through molecu-
lar dynamics studies [27]. The supplementary material 
details the method utilized for selecting the appropriate 
pose for molecular docking-assisted pharmacophore 
modeling.

The X-ray diffraction crystallographic structure of the 
human aromatase enzyme (PDB ID: 3EQM) with a res-
olution of 2.90  Å was obtained from the Protein Data 
Bank for molecular docking Molecular visualization 
software PyMol removed the co-crystallized ligand ASD 
and added hydrogens [28]. Catalytic water molecules 
were maintained as previous research has pointed out 
their involvement in the hydroxylation mechanism of 
aromatization in CYP19A1 [29]. The active site was vis-
ualized using MGL Tools [30]. Box size (16, 20, 16) and 
box center (85.1, 51.016, 43.076) were assigned using 1 Å 
spacing. Finally, the AutoDock Vina program performed 
molecular docking with 100 exhaustiveness. [31].
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Utilizing the same settings in LigandScout that were 
used to establish the ligand-based pharmacophore 
model. Our group created a structural-based pharmaco-
phore model.

Merged pharmacophore generation
Using the alignment module of LigandScout, the two pre-
vious models were aligned based on their features, and 
the common pharmacophoric attributes were merged to 
create a unified model.

Benchmarking database, selecting the best model, 
and virtual screening
A database of 40 highly active aromatase inhibitors of 
various scaffolds sourced from the literature was used 
to generate 1,509 decoys using the DecoyFinder pro-
gram [32] from the drug-like subset of the ZINC15 
database [33]. To improve the decoys’ reliability, 815 
compounds were selected from the program’s output. In 

AutodockVina docking with aromatase, this subset repre-
sented decoys with the lowest binding energy. The three 
models were benchmarked using LigandScout decoys 
and a pharmacophore-fit scoring function matching all 
query features and a maximum of 2 omitted features with 
volume exclusion. After that, ROC analysis determined 
each pharmacophore model’s selectivity and specificity.

The CMNPD database was imported onto LigandS-
cout, and pharmacophore-based virtual screening was 
conducted according to the aforementioned parameters.

Molecular docking study
The pharmacophore-based virtual screening hits under-
went molecular docking analysis using AutoDock Vina. 
The same docking parameters mentioned previously were 
employed. Compounds that had a docking score higher 
than −7 kcal/mol, a pharmacophore fit score higher than 
70, and an azaheterocyclic ring were filtered to be used in 

Table 1  The structure and cytotoxicity of 2-phenyl indole-based aromatase inhibitors [24]

This series was used to start a ligand-based pharmacophore model. A docking-assisted structural-based model (supplementary material) was built using Compound 
6, which had the highest biological efficacy

Compound Structure IC50 (µM) Compound Structure IC50 (µM)

Compound 6 0.0141 Compound 10 0.1965

Compound 19 0.0323 Compound 12 0.2075

Compound 15 0.0361 Compound 5 0.2106

Compound 9 0.0512 Compound 13 0.2174

Compound 3 0.0544 Compound 20 0.2376

Compound 17 0.0583 Compound 2 0.2608

Compound 14 0.0829 Compound 7 0.2768

Compound 18 0.0969 Compound 8 0.6774

Compound 16 0.1087 Compound 4 1.0580
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molecular dynamics studies. Clustering analysis method-
ology is provided in the supplementary material.

Molecular dynamics simulation
Various compounds, including Androstenedione 
(co-crystal ligand), CMNPD7905, CMNPD7907, 
CMNPD11121, CMNPD27987, Formestane (second gen-
eration AI), and Letrozole (third generation AI), were 
used in unbiased molecular dynamics (MD) simulation 
utilizing GROMACS 2021 software, with a simulation 
duration of 200  ns [34]. To prepare the necessary input 
files, the solution builder module of the CHARMM-GUI 
server was utilized [35–38]. Each complex was placed 
in a 9.4-nm cubic box in solvent. The transferable inter-
molecular potential 3 points (TIP3P) water model and a 
padding region 1 nm beyond the farthest atom were used 
in the solvation process. For system neutrality, 0.154  M 
NaCl ions were added. The CHARMM36m force field 
determined CYP450 protein amino acid parameters, 
TIP3P water model parameters, and neutralizing ion 
parameters. CHARMM general force field (CGenFF) 
parameterized molecules.

Periodic boundary conditions (PBC) were used in 
all three dimensions during simulation. Prevention of 
atomic collisions involved potential energy minimiza-
tion. After 100,000 minimization steps or when the maxi-
mum force applied to any atom dropped below 100  kJ/
(mol.nm), the minimization process converged. Two 
equilibration stages established thermal and pressure 
equilibrium in the systems. The NVT ensemble set an 
average temperature of 310 K using the Velocity Rescale 
method during initial equilibration. In the next stage, the 
NPT ensemble used the Berendsen barostat and veloc-
ity rescaling to maintain 1 atm atmospheric pressure and 
310 K average temperature [39]. Throughout the 200 ns 
production run, the NPT ensemble was employed, with 
temperature control achieved using the Nose–Hoover 
thermostat and pressure control maintained by the Par-
rinello-Rahman barostat. The temperature was main-
tained at 310 Kelvin, while the pressure was kept at 1 
atmosphere [40]. To impose constraints on the lengths of 
hydrogen-bonded atoms, the LINear Constraint Solver 
(LINCS) algorithm was utilized [41]. Electrostatic cal-
culations were performed using the Particle Mesh Ewald 
(PME) method with a threshold of 1.2 nm [42]. The New-
tonian equations of motion were numerically integrated 
using leap-frog integration with a time step of 1 femto-
second during equilibration and 2 during production. At 
0.1  ns intervals, 2,000 frames were recorded during the 
simulation.

Following the repositioning of the protein within the 
periodic box to restore its structural integrity using 
the gmx trjconv tool, a comprehensive examination of 

the trajectory was conducted using VMD TK scripts 
[43]. The Root Mean Square Deviation (RMSD) for the 
CYP450 protein and each compound was calculated 
using several methods. Other structural characteristics 
such as Root Mean Square Fluctuation (RMSF), Radius of 
Gyration (RoG), Solvent Accessible Surface Area (SASA), 
hydrogen bond number between compounds and 
CYP450, and ligand distance from protein center of mass 
were also examined. To study ligand-amino acid interac-
tions, each trajectory frame was carefully examined. This 
was done using the Protein–Ligand Interaction Finger-
prints (ProLIF) Python program to identify interacting 
amino acids and assess their stability importance [44].

Binding free energy calculation using MM‑GBSA
The gmx_MMPBSA program used MM-GBSA to calcu-
late the ligand’s binding energy. Additionally, a decompo-
sition analysis assessed the binding contribution of each 
amino acid within a 1-nm radius of the ligand. [45, 46]. 
The selected parameters encompassed an ionic strength 
of 0.154 M and a solvation technique (igb) value of 5. The 
internal dielectric constant was set at 1.0, while the exter-
nal dielectric constant was set at 78.5. Mathematically, 
the MM-GBSA method can be represented by Eq. 1.

where <  > represents the average of the enclosed free 
energies of complex, receptor, and ligand over the frames 
used in the calculation. In our approach, we used the 
whole trajectory (a total of 2000 frames). Different energy 
terms can be calculated according to Eqs. 2, 3, 4, 5, 6 as 
follows:

where:
∆H is the enthalpy which can be calculated from gas-

phase energy (Egas) and solvation-free energy (Esol). -T∆S 
is the entropy contribution to the free binding energy. 
Egas is composed of electrostatic and van der Waals 
terms; Eele, EvdW, respectively. Esol can be calculated from 
the polar solvation energy (EGB) and nonpolar solvation 
energy (ESA) which is estimated from the solvent-accessi-
ble surface area [47, 48].

(1)�G = < Gcomplex - (Greceptor + Gligand) >

(2)�Gbinding =�H - T�S

(3)�H =�Egas +�Esol

(4)�Egas =�Eele +�EvdW

(5)�Esolv = EGB + ESA

(6)ESA = γ .SASA
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Results
Pharmacophore modeling and virtual screening.
Ligand‑based, structural‑based, and merged pharmacophore 
modeling
LigandScout selected the top-scoring ligand-based 
pharmacophore model (0.94) from 10 models. 

Compound 6 scored 92.5 pharmacophore-fit. In this 
model, the heterocyclic group and para 2-phenyl posi-
tion had hydrogen bond acceptors, and the 2-phenyl 
position and indole’s benzene ring had hydrophobic 
moieties. The pyrrole ring of indole had an aromatic 
moiety with a hydrogen bond donor at nitrogen 

Fig. 2  Pharmacophore models. (1) Ligand-based pharmacophore model. (1.A) Two-dimensional representation of ligand-based pharmacophore 
mode showcasing important functional groups. (1.B) Three-dimensional representation of ligand-based pharmacophore mode showcasing 
important functional groups. (1.C) ROC analysis for ligand-based model. (2) Structural-based pharmacophore model. (2.A) Two-dimensional 
representation of Structural-based pharmacophore mode showcasing important functional groups. (2.B) Three-dimensional representation 
of structure-based pharmacophore mode showcasing important functional groups. (2.C) ROC analysis for the structure-based model. (3) Merged 
pharmacophore model. (3.A) Two-dimensional representation of merged model. (3.B) Three-dimensional representation of merged pharmacophore 
moded. (3.C) ROC analysis for merged model
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(Fig. 2.1). A benchmarking study using 40 active com-
pounds and 815 decoys verified the model’s virtual 
screening reliability. ROC analysis showed AUC of 
0.54, EF of 21.4, and pAUC values of 1.00, 1.00, and 
0.88 at 1%, 5%, and 10% of the screened database 
(Fig. 2C).

Supplemental material contains docking-assisted 
structural-based pharmacophore model cluster analy-
sis data. The structure-based pharmacophore model 
found seven features, including an iron-binding site, 
aromatic ring, and hydrogen bond acceptor at Com-
pound 6’s azaheterocyclic ring.The model showcased 
possible hydrogen bonding at the Met374 position. 
Hydrophobic interactions were observed with Phe134, 
Val370, and other binding site residues. ROC analysis 
yielded 23 hits (18 actives, 5 decoys), 0.72 AUC, 16.7 
EF, and 1.00 pAUC at 1%, 5%, and 10% (Fig. 2.2C).

A merged model with 22 true positives and no 
decoys retained key shared and unique pharmacoph-
oric elements from both approaches. AUC was 0.77, 
EF 21.4, and pAUC 1.00 at 1%, 5%, and 10% (Fig. 2.3A).

Pharmacophore‑based virtual screening.
The open-access CMNPD database supports marine 
natural products research [22]. It covers many chemical 
entities’ physicochemical and pharmacokinetic proper-
ties. Standardized biological activity data, systematic 
taxonomy, source organism geographical distribution, 
and literature citations are also available in the database. 
About 31,000 compounds from 3,400 marine organ-
isms make up CMNPD. After importing the database 
into LigandScout, pharmacophore-based virtual screen-
ing was performed using the method parameters. The 
screening yielded 1,385 hits with 53.32–81.48 pharmaco-
phore-fit scores.

Molecular docking study
Molecular docking using AutoDockVina
The parameters for molecular docking were applied to all 
virtual screening hits using AutoDock Vina. Four com-
pounds—CMNPD27987, CMNPD11121, CMNPD7905, 
and CMNPD7907 (Table  2)—met the selection criteria 
with docking scores above −7 kcal/mol, pharmacophore 
fit scores above 70, and containing azaheterocyclic rings. 

Table 2  Candidate and reference drug names, docking binding energies, pharmacophore-fit scores, and chemical structures

The bioactive pose candidate was identified manually, like the structure-based pharmacophore model. This required hierarchical cluster analysis of poses generated 
over 100 iterations, calculation of RMSD between cluster representatives’ azaheterocyclic rings and letrozole’s, and measurement of the distance between the center 
and the heme group’s Fe atom. Molecular docking cluster analysis data is in the supplementary material

Name Binding energy (Kcal/mol) Pharmacophore-Fit Score Structure

Androstenedione (ASD) −14 NA

Formestane −13.1 NA

Letrozole −7.1 66.82

Compound 27,987 −10.1 72.18

Compound 11,121 −10 71.81

Compound 7905 −8.6 76.18

Compound 7907 −8.6 76.19
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These four compounds were included in subsequent 
molecular dynamics studies. The study included andros-
tenedione (co-crystal ligand), formestane (type I AI), and 
letrozole (type II AI and reference drug) as controls.

Structural analysis of protein–ligand interaction profiles.
Analysis of the protein–ligand interaction profile of the 
co-crystal ligand androstenedione revealed the formation 
of two hydrogen bonding interactions with amino acid 
residues Arg115 and Met374. Several carbon-hydrogen 
bonds with Arg115, Ala306, Val373, and Met374 were 
also observed. Two hydrophobic interactions: a Pi-sigma 
interaction with the heme moiety and a Pi-alkyl interac-
tion with Trp224. A number of van de Waals interactions 
with amino acid residues of the binding pocket include 
Phe221, Leu477, Phe134, Leu372, Val373, Val370, Ile133, 
Thr310, Ile305, and Asp309 (Fig. 3).

Formestane, a second-generation, steroidal AI, has a 
structure similar to the co-crystalized ligand, wherein the 
hydrogen at position 4 is replaced by a hydroxy group. In 
terms of hydrogen bonds, it forms similar interactions 
with amino acid residues Arg115 and Met375; however, 
it shows an additional hydrogen bonding interaction 
with Asp309, in which the 4-hydroxy acts as a hydrogen 
bond donor (Fig. 4B3). Formestane has a total of 11 van 
der Waal interactions with the following amino acids: 
Trp224, Ile305, Asp309, Ser478, Phe221, Thr310, Phe134, 
Leu372, Val373, Val370, and Ile133 (Fig. 4A).

The binding interactions of letrozole, a third-generation 
non-steroidal AI and an in-market drug, had the highest 
number of interactions when compared to androsten-
edione and formestane. Letrozole formed three strong 
conventional hydrogen bonding interactions with amino 
acid residues Arg115, Met374, and Ser478. Amino acid 
residues His480, Val369, Ser478, Leu477, Phe134, Val373, 
Trp224, Phe221, Asp309, Thr310, Val313, and HOH630 
participated in van der Waal interactions with letrozole 
(Fig. 5A).

Similar to letrozole, the first hit, CMNPD27987, shows 
hydrogen bonding interactions with Arg115, Met374, 
and Ser478. However, it forms an additional hydrogen 
bond with the water molecule HOH605 of the bind-
ing site (Fig.  6B) Van der Waal interactions between 
CMNPD27987 and CYP19A1 include Leu372, Arg115, 
Phe134, Val313, His480, Val369, Phe221, Asp309, 
Leu477, and Trp224 (Fig. 6A).

The second hit, CMNPD11121, forms a single hydro-
gen bonding interaction with the Leu477 amino acid 
residue of the binding site (Fig. 7B). The following hydro-
phobic interactions take place between the ligand and 
the protein structures: Glu302, Val373, Arg115, Met374, 
Phe134, Leu372, Ser478, Phe221, Thr310, Trp224, and 
Ile305 (Fig. 7A).

CMPND7905 forms a single hydrogen-bonding inter-
action with amino acid residue Ala306 (Fig. 8B). Favora-
ble van der Waals non-bonded interactions include the 
heme moiety and amino acid residues Phe134, Arg115, 
Met374, Val373, Leu372, Ser478, and Phe221 (Fig. 8A).

The protein–ligand interaction profile of CMNPD7907 
shows no hydrogen bonding interactions within the pro-
tein–ligand complex (Fig.  9). The following amino acid 
residues participated in non-bonded van der Waal inter-
action between compound 7905 and CYP19A1: Val373, 
Arg115, Ile133, Ala306, Trp224, Ile305, Asp309, Phe221, 
Ser478, Leu372, Phe134, and Met374 (Fig. 9).

Molecular dynamics simulation
Throughout the production run, the compounds exhib-
ited stable binding to the protein. In each system, protein 
structural integrity was stable, with RMSD values rang-
ing from 1.7 Å to 2 Å from 25 ns, except for the CYP450 
& CMNPD7907 complex, which had a slightly larger 
average of 2.5  Å (Fig.  10A). The ligand RMSD values 
(Fig. 10B) showed diverse patterns. Most compounds had 
stable RMSD values between 1 Å and 2.7 Å, with three 
exceptions. CMNPD11121 (red line) showed a stable 
trend for 130  ns, then increased to 2.8  Å (130–170  ns) 
and 4 Å in the last 30 ns. This change in RMSD value for 
CMNPD11121 indicated a conformational change, as 
shown in Fig. 10C, which compares its structure after 21 
(green sticks), 155 (cyan sticks), and 192 (magenta sticks) 
ns. CMNPD11121 changed conformation and slightly 
deviated from its binding position. The second exception 
was CMNPD7905 (magenta line), which had two confor-
mations in each simulation half. CMNPD7905 is shown 
in green at 20 ns and cyan at 152 ns in Fig. 10D. Between 
the two conformations, CMNPD7905 rotated around the 
protein while maintaining its binding location. Lastly, 
Letrozole (pink line) showed an average RMSD of 1.5 Å 
for 75  ns, then increased to 3.7  Å. Like CMNPD7905, 
a conformational change (rotation around the binding 
site) caused this rise. Figure  10E compares Letrozole’s 
structure at 56 (green sticks) and 94 (cyan sticks) ns. The 
simulation showed that all compounds formed hydrogen 
bonds, including Androstenedione (blue line), Form-
estane (pink line), and Letrozole (cyan line). The fewest 
hydrogen bonds were in CMNPD7907 (orange line) and 
CMNPD7905 (magenta line). However, CMNPD11121 
(red line) and CMNPD27987 (green line) formed two to 
three hydrogen bonds (Fig. 10F). Figure 10G and H reveal 
a consistent trend in the average radius of gyration (RoG) 
(22.8  Å) and solvent-accessible surface area (SASA) 
(22,500 Å2) for each system. All systems were stable, 
but molecules showed conformational changes. Addi-
tionally, C-alpha atom oscillations showed low values 
for most proteins in each system, with occasional spikes 
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(> 2 Å) indicating loop fluctuations (Fig. 10I). In Fig. 10J, 
the distance between Androstenedione, CMNPD27987, 
CMNPD7907, and Formestane’s center of mass and 
CYP450 remained stable at around 5  Å throughout the 

simulation. However, CMNPD11121, CMNPD7905, and 
Letrozole had slightly fluctuating values, which matched 
their RMSD values.

Fig. 3  The figure shows (A) A two-dimensional representation of the interaction profile between ASD and the human aromatase enzyme. B 
demonstrates hydrogen bond interactions within the binding site, with (B.1) showcasing the overall interactions and (B.2) providing a closer view 
of the hydrogen bond interaction with a surface representation
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The MM-GBSA-calculated binding free energy com-
ponents has been shown in Fig.  11. CYP450’s binding 
energies with Androstenedione (co-crystalized ligand), 

Formestane (commercially available drug), and Letrozole 
(commercially available drug) are −21.17, −26.75, and 
−22.82 kcal/mol, respectively. The two commercial drugs, 

Fig. 4  The figure demonstrates (A) Depiction of a two-dimensional representation illustrating the interaction profile between formestane 
and the human aromatase enzyme. B illustrates hydrogen bond interactions within the binding site, with (B1) presenting an overview 
of the interactions and (B 2 and 3) offering a close-up view of the hydrogen bond interaction along with a surface representation
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Fig. 5  A A depiction of a two-dimensional representation illustrating the interaction profile between formestane and the human aromatase 
enzyme. B illustrates hydrogen bond interactions within the binding site, with (B1) presenting an overview of the interactions and (B 2 and 3) 
offering a close-up view of the hydrogen bond interaction along with a surface representation
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Fig. 6  A A two-dimensional representation illustrating the interaction profile between letrozole and the human aromatase enzyme. B illustrates 
hydrogen bond interactions within the binding site, with (D1) presenting an overview of the interactions and (B 1 and 2) providing a close-up view 
of the hydrogen bond interaction along with a surface representation
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Fig. 7  A A two-dimensional representation illustrating the interaction profile between CMNPD 11121 and the human aromatase enzyme. (B) 
illustrates hydrogen bond interactions within the binding site, with (B1) presenting an overview of the interactions and (B2) offering a close-up view 
of the hydrogen bond interaction along with a surface representation
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Fig. 8  A Two-dimensional representation illustrating the interaction profile between CMNPD7905 and the human aromatase enzyme. B illustrates 
hydrogen bond interactions within the binding site, with (B1) presenting an overview of the interactions and (B2) providing a close-up view 
of the hydrogen bond interaction along with a surface representation
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especially Formestane, have a higher binding affinity than 
the co-crystal structure ligand. Only CMNPD27987 has 
a higher average total binding energy than the co-crystal 
ligand and currently used drugs, averaging −27.66 kcal/
mol. The other three compounds, CMNPD11121, 
CMNPD7905, and CMNPD7907, have lower binding 
affinities than the co-crystal ligand, averaging −16.57, 
−12.14, and −12.84  kcal/mol, respectively. The van der 
Waals component averages −32 kcal/mol for most com-
pounds, except Androstenedione, which averages −27.75. 
Electrostatic interactions show that the two compounds 
contribute more than the other ligands. CMNPD11121 
has the highest average value of −47.66  kcal/mol, fol-
lowed by CMNPD27987 at −36.03. Electrostatic contri-
butions over −16  kcal/mol characterize the remaining 
molecules.

The decomposition of common amino acids within 
1 nm of each compound compared to Androstenedione 
has been shown in Fig. 12A, B, C, and D, Formestane, and 
Letrozole. The reference compounds and CMNPD7905 
(Fig.  12A) share six amino acids, three of which (Ile70 
(−1.64  kcal/mol), Gly71 (−1.07  kcal/mol), and Ile106 
(−1.02)) contribute −1 kcal/mol or less. The first amino 
acid outperforms Androstenedione and Letrozole, 
while the last two contribute less. Four amino acids 
(Ile70 (−2  kcal/mol), Gly71 (−1.08  kcal/mol), Met107 
(−1.23  kcal/mol), and Ser114 (−1  kcal/mol)) contrib-
ute more than −1  kcal/mol to CMNPD7907 (Fig.  12B). 
CMNPD7907 binds better to Ile70 and Met107 than 
the reference compounds. The same four amino acids 

are in CMNPD11121 (Fig. 12C), but with different con-
tributions. Met107 is the only amino acid that binds 
CMNPD11121 better than the reference compounds, 
averaging −1.99  kcal/mol. Finally, CMNPD27987 
(Fig. 12D) shares seven amino acids with reference com-
pounds: Ile70, Gly71, Ile106, Met107, Tyr112, Ser114, 
and Arg115 (−1.02–1.52 kcal/mol). This matches Fig. 11’s 
best binding affinity.

As shown in Fig.  13, ProLIF library analysis revealed 
ligand-CYP450 binding interactions. The three reference 
compounds interacted consistently throughout the simu-
lation, with occupancy rates of 92.3%. In Androstenedi-
one, six amino acids had many hydrophobic interactions. 
Arg115 (97.3%), Ile133 (93.4%), Ala306 (92.3%), Val370 
(95.3%), Val373 (96.1%), and Met374 (98.1%). Met374 
also formed 94.1% hydrogen bonds. Formestane also had 
nine hydrophobic interactions with frequencies of at least 
95.3%. Arg115 (97.9%), Ile133 (99.8%), Phe134 (95.3%), 
Trp224 (95.8%), Ala306 (99.6%), Val370 (99.4%), Val373 
(99.9%), Met374 (96.7%), and Leu477 (95.3%) Like the 
co-crystalized ligand, Met374 formed hydrogen bonds 
at 96.6%. Letrozole had hydrophobic interactions with 
Ile133 (98.9%), Trp224 (93%), and Thr310 (99.2%).

The remaining four compounds involved hydropho-
bic interactions with CMNPD11121, Androstenedione, 
and Formestane via three amino acids: Arg115 (93.8%), 
Ile133 (97.2%), and Val370 (93.8%). CMNPD7905 also 
interacted hydrophobically with six amino acids: Arg115 
(90.2%), Ile133 (99.6%), Phe134 (94.4%), Trp224 (99%), 
Ala306 (95.3%), and Val370 (91.9%) Those interacting 
with Formestane share these amino acids. CMNPD7907 
hydrophobically interacted with six amino acids: Ile133 
(96.3%), Phe134 (99.3%), Trp224 (97.6%), Val370 (99.8%), 
Met374 (95.3%), and Leu477 (94.2%). Often com-
pared to Formestane-interacting amino acids. Finally, 
CMNPD27987 interacted in many ways. The amino 
acids Phe134 (94.2%), Trp224 (100%), Gln225 (91.1%), 
Thr310 (94.6%), and Val370 (98.4%) formed hydropho-
bic interactions. Pi-stacking occurred 93.9% of the time 
for Trp224. A hydrogen bond occurred 90.8% of the time 
with Asp309.

Discussion
The progression of carcinogenesis in hormone recep-
tor-positive breast cancer patients can depend on the 
peripheral conversion of androgen precursors to estrogen 
through the human aromatase enzyme [4]. Considering 
the predominant hormone dependence of most breast 
cancer tumors [49], CYP19A1 offers an important avenue 
for the investigation of new lead candidates capable of 
inhibiting estrogen biosynthesis [50]. We used computa-
tional methods to find marine natural products that bind 
to the human aromatase enzyme’s active site [51–53].

Fig. 9  The figure depicts a two-dimensional representation 
illustrating the interaction profile between CMNPD7907 
and the human aromatase enzyme
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Fig. 10  The figure shows (A) the protein RMSD values from each trajectory, B the ligands RMSD values, C a comparison between the structure 
of CMNPD11121 at 21 ns (green sticks), 155 ns (cyan sticks), and 192 ns (magenta sticks). The upper molecule is the HEME, D Shows a comparison 
between the structure of CMNPD7905 at 20 ns (green sticks) and 152 ns (cyan sticks), E Shows a comparison between the structure of Letrozole 
at 56 ns (green sticks) and 94 ns (cyan sticks), F change in the number of hydrogen bonds formed between CYP450 and each compound, G 
radius of gyration for the CYP450 in each system, H SASA for the CYP450 in each system, I RMSF for the CYP450 in each system and (J) distance 
from the center of mass of each ligand and CYP450 protein. In each figure, the CYP450 & Androstenedione system is the blue line, CYP450 & 
CMNPD11121 system is the red line, CYP450 & CMNPD27987 system is the green line, CYP450 & CMNPD7905 system is the magenta line, CYP450 & 
CMNPD7907 system is the orange line, CYP450 & Formestane system is the cyan line, and CYP450 & Letrozole system is the pink line
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The best ligand-based pharmacophore model scored 
0.94. This model had the highest pharmacophore-fit 
score with Compound 6, Kang et al.’s most potent com-
pound. [24]. An in-house benchmarking database of 40 
actives from the literature and 815 decoys generated 
by the DecoyFinder program was used in each step of 
our pharmacophore modeling protocol. [54–56]. The 
model produced 3 hits, all of which were true positives, 
but its low sensitivity (7.5% of total actives) offset its 

high specificity, making it unsuitable for virtual screen-
ing. Due to the lack of enzyme binding site structure in 
ligand-based approaches [57], the model failed in reveal-
ing crucial amino acid residues that complement the 
pharmacophoric features of the ligand. To overcome 
the absence of crystallographic, experimental structures 
for protein–ligand complexes, researchers often resort 
to docking studies, utilizing either homology models or 
existing crystal structures [58–60]. Molecular docking 

Fig. 11  The figure shows the different energetic components of MM-GBSA and their values. Bars represent the standard deviations

Fig. 12  The figure shows the binding free energy decomposition of common amino acids between (A) CMNPD7905, (B) CMNPD7907, (C) 
CMPND11121, and (D) CMPND27987 and the three reference compounds (Androstenedione, Formestane, and Letrozole) that have a contribution 
of better than −1 kcal/mol. Amino acids with less than four bars mean that some compounds do not have a contribution of less than −1 kcal/mol
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Fig. 13  The figure shows the amino acids, the types of interactions with each of the seven ligands in this study, and their occurrence 
during the whole simulation time using the ProLIF Python library
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helps identify bioactive poses for candidate ligands by 
exploring conformational space.

We used AutoDockVina to study the interaction 
between the azaheterocyclic ring and the iron porphy-
rin’s heme atom in the enzyme’s active site to design a 
structure-based pharmacophore mode for Compound 
6 and letrozole. As a widely studied non-steroidal drug, 
letrozole was used as a reference [27, 61–65]. UV-absorp-
tion spectrum data suggests that letrozole’s correct bind-
ing pose at aromatase’s binding site must accommodate 
the metal coordination bond between its proximal nitro-
gen and the iron porphyrin’s heme atom. Our docking 
study generated the correct pose, but AutoDockVina 
did not rank it highest. Our findings contradict several 
published studies on letrozole and other azaheterocylic 
ring-containing compounds’ binding to human aro-
matase. [9, 24, 64, 66, 67]; however, they are in line with 
a recent computational study that revealed Vina, among 
other commonly used docking programs, is not accu-
rate in ranking the output poses of ligands docked to 
metalloproteins [68]. We found similar docking results 
to Galeazzi and Massaccessi’s Autodock 4.0 study. The 
correct pose of the azaheterocyclic ring facing the heme 
atom was confirmed by a molecular dynamic study. 
[27]. Some studies introduced a distance constraint dur-
ing docking to account for the metal coordination bond 
between the heme iron and the proximal nitrogen of the 
ligand [69–71]. Not doing so allowed us to fully explore 
the conformational space for an energetically favorable 
orientation. Our group used molecular docking through 
AutodockVina to generate poses for Compound 6 and 
letrozole. Using clustering analysis, RMSD value for aza-
heterocyclic ring of representatives from each cluster and 
for the bioactive pose of letrozole proposed in the litera-
ture, and the distance between the Fe atom and the repre-
sentative confirmation from each cluster, we were able to 
manually select potential bioactive poses. Ourt structural 
based model established based on the aforementioned 
criteria has shown interactions with amino acid resi-
dues like Met374, Phe134, Val373, Thr310, and Leu477. 
[9, 11, 61, 63–65, 72, 73]. The model, however, showed 
low specificity producing 5 false positives (AUC 0.72 and 
EF 16.7) despite its high sensitivity. The combination of 
structure- and ligand-based methods in drug discovery 
is a growing approach in CADD [74]. Employing an inte-
grated strategy can enhance the strengths and mitigate 
the limitations of each method [75]. Smith et al. devised 
a sequential pipeline that involves refining hits obtained 
from multiple ligand- and structure-based pharmacoph-
ores by applying druglikeness and ADMET filters [59]. 
Malgorzara et  al. utilized a similar approach to retrieve 
DNA topoisomerase I inhibitors [76]. To save computa-
tional power and virtual screening time, we combined 

ligand-based and structural-based pharmacophore mod-
els instead of sequential approaches. The model used 
structural knowledge of the protein’s binding pocket 
and the common pharmacophoric features of promising 
ligands. A similar approach was employed in two pre-
vious studies: in the firt, a ligand- and structure-based 
pharmacophore model were merged to improve virtual 
screening for cancer. Osaka thyroid (COT) kinase inhibi-
tors using LigandScout [77]. The second study included a 
similar regimen to detect CDK9/Cyclin T1 kinase inhibi-
tors [78]. Both studies lack benchmarking validity to 
assess the model’s bioactive lead candidate identification 
efficiency, unlike ours. Merging the pharmacophoric fea-
tures of both models improved sensitivity and specificity 
to 0.77 and 21.4, respectively. The model produced 22 
true positives, representing 55% of total actives.

The aromatase-androstenedione complex showed 
hydrogen bonding with Met374 and Arg115. The ligand 
additionally interacts via van der Waals forces with resi-
dues Phe221, Leu477, Phe134, Leu372, Val373, Val370, 
Ile133, Thr310, Ile305, and Asp309. This confirms pre-
vious findings. [79, 80]. According to Ghosh et  al., the 
steroidal substrate’s mechanism involves catalytic resi-
dues Thr310, Ala306, and Asp309. Thr310 and Ala306 
attack H2β carbon, while protonated Asp309 promotes 
2,3-enolization by electrophilic attack on 3-keto oxy-
gen. Their research showed that steroidal inhibitors like 
exemestane could stop aromatization by reducing Thr310 
mobility through favorable interactions. [80]. ASD had 
a stable protein and ligand RMSD, radius of gyration, 
SASA, and distance between its center of mass and 
CYP19A1 during the 200  ns molecular dynamics simu-
lation. According to ProLIF library data, ASD formed 
stable hydrogen bonds with Arg115 and Met374. Given 
its overall favorable interactions, it had one of the high-
est MM-GBSA free binding energies at −21.17 kcal/mol. 
It also showed six hydrophobic interactions with amino 
acids Arg115 (97.3%), Ile133 (93.4%), Ala306 (92.3%), 
Val370 (95.3%), Val373 (96.1%), and Met374 (98.1%), 
three of which were confirmed by molecular docking.

We found that formestane, another steroidal inhibitor 
with a C6 hydroxy group, hydrogen bonds with amino 
acid residues Arg115, Met374, and Asp309. Suvan-
nang et  al. suggested that formestane can form hydro-
gen bonds with Met374’s backbone amine and Asp309’s 
carboxylic acid, resulting in tighter and stronger van der 
Waals contacts with surrounding amino acids and a high 
aromatase binding affinity. [11]. Formestane may dis-
rupt the proton relay network that aromatizes androgen 
precursors by binding to Asp309. Molecular dynamics 
simulation showed low protein and ligand RMSD values, 
confirming formestane’s stability in protein complexes. 
According to ProLif library data, Formestane formed 
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at least one hydrogen bond with Met374 in the simula-
tion, supporting our molecular docking findings. A stable 
radius of gyration, SASA, and distance between its center 
of mass and the aromatase protein were also observed. 
At −26.75  kcal/mol, formestane had the second-highest 
MM-GBSA free binding energy of all tested hits, indicat-
ing stable binding. Our molecular dynamics simulation 
confirmed four of formestane’s nine hydrophobic interac-
tions with the aromatase enzyme’s backbone, which sug-
gests its stability. ProLIF library analysis suggests at least 
95.3% of these interactions occur.

Nonsteroidal aromatase inhibitors reversibly coor-
dinate the heme moiety’s iron atom through the het-
erocyclic ring’s distal nitrogen. Letrozole, the reference 
non-steroidal AI used in this study, formed hydrogen 
bonds with residues Met374 and Arg115 through one of 
its two benzonitrile groups and a third bond with Ser478 
through the other moiety, suggesting a role in the aroma-
tization reaction’s first and second hydroxylation steps. 
[81]. Also observed were van der Waals contacts with 
amino acids His480, Val369, Ser478, Leu477, Phe134, 
Val373, Trp224, Phe221, Asp309, Thr310, HOH630, and 
Val313. Letrozole’s triazole ring stacks Pi-Pi with the por-
phyrin ring. Previous research supports these findings 
[71, 82, 83]. Hydrogen bonding with a benzonitrile group 
or another strategically positioned moiety relative to the 
azaheterocyclic ring is recognized as crucial for achiev-
ing potent aromatase inhibitory effects in nonsteroidal 
aromatase inhibitors [84, 85]. Protein RMSD in molecu-
lar dynamics simulations showed letrozole-stabilized 
CYP19A1. In the first 75 ns, letrozole’s ligand RMSD was 
stable but then fluctuated to 3.7 Å. These findings suggest 
that letrozole may have changed conformation to correct 
its active site binding pose. Despite rotation, the ligand 
maintained its azaheterocyclic ring toward the heme 
moiety. The simulation showed that letrozole formed at 
least one hydrogen bond, supporting the molecular dock-
ing results. Due to fluctuations, letrozole maintained a 
stable radius of gyration and SASA but not a consistent 
distance between its center of mass and CYP19A1. Letro-
zole’s MM-GBSA free binding energy was −22.82  kcal/
mol, the third highest among all compounds and higher 
than the co-crystalized ligand, indicating robust bind-
ing. Letrozole’s stability was confirmed by ProLIF library 
analysis, which showed hydrophobic interactions with 
three amino acids: Ile133 (98.9%), Trp224 (93%), and 
Thr310 (99.2%). All molecular docking results agree.

Among the most stable active hits, CMPND 27987, 
an imidazole ring faces the iron atom of the heme moi-
ety at 5.4 Å. One of the two phenol groups forms hydro-
gen bonding interactions with catalytic residues Ser478, 
HOH605, and Met374, Arg115 in the catalytic cleft, 
similar to the two benzonitrile moieties of letrozole. 

Besides van der Waal interactions with amino acid resi-
dues Leu372, Arg115, Phe134, Val313, His480, Val369, 
Phe221, Asp309, Leu477, and Trp224, CMPND 27987 
forms hydrophobic contacts with the iron porphy-
rin. These positive interactions may explain CMPND 
27987’s high aromatase enzyme binding affinity. Pro-
tein and ligand RMSD data from the molecular dynamic 
simulation showed that CYP19A1 and CMPND 27987 
remained stable. The ligand formed 2–3 hydrogen bonds 
with the protein’s backbone the most. Despite molecular 
docking results, ProLIF library analysis shows CMPND 
27987 forming hydrogen bonds with amino acids Trp224, 
Gln225, Asp309, and Thr310, which is consistent with 
literature data for other aromatase inhibitors. [11, 86]. 
It kept its solvent-accessibility surface area and gyration 
radius stable. It also had a stable center of mass distance 
from CYP19A1. CMPND27987 had the highest MM-
GBSA free binding energy of −27.75  kcal/mol, higher 
than the co-crystallized ligand, indicating strong binding 
affinity. It shares seven amino acids with the three refer-
ence compounds used in this study (Ile70, Gly71, Ile106, 
Met107, Tyr112, and Arg115). The second-highest aver-
age value of −36.03 kcal/mol for electrostatic interactions 
shows that CMNPD27987 contributes more than most 
other ligands. Molecular docking studies confirmed that 
two of the five amino acids—Phe134 (94.2%) and Trp224 
(100%), Gln225 (91.1%), Thr310 (94.6%), and Val370 
(98.4%)—formed hydrophobic interactions with CMPND 
27987. Trp224 also engaged in Pi-stacking interactions 
with a 93.9% rate, which was not supported by molecular 
docking but agreed with Galeazzi and Massaccesi’s letro-
zole results. [27].

The phenol group of CMPND 11121 forms a single 
hydrogen bonding interaction with Leu477, which has 
been suggested to induce therapeutic potential [87]. It 
forms a Pi-Pi stacked interaction with the heme moi-
ety and van der Waal interactions with residues Glu302, 
Val373, Arg115, Met374, Phe134, Leu372, Ser478, 
Phe221, Thr310, Trp224, and Ile305. CMPND 11121’s 
lower binding affinity than CMPND 27987 may be due 
to its inability to hydrogen bond with Met374. Molecu-
lar dynamics simulations showed that CYP19A1 and 
CMPND 11121 remained stable throughout the study, as 
shown by consistent protein RMSD data. In the simula-
tion, CMPND 11121 ligand RMSD was stable for 130 ns 
but increased to 2.8 Å between 130 and 170 ns and 4 Å 
in the final 30 ns. The final conformation shows the aza-
heterocyclic ring 0.7  nm from the center of the heme 
molecule, suggesting CMPND 11121 may not coordinate 
the iron atom. Like CMPND 27987, CMPND 11121 had 
2–3 hydrogen bonds with the protein’s backbone. ProLIF 
library analysis showed one hydrogen bond with Arg114, 
matching docking results. The ligand maintained a stable 
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radius of gyration and SASA, but its center of mass and 
that of CYP19A1 fluctuated slightly, which could be 
explained by the conformational change. CMPND27987’s 
MM-GBSA free binding energy was −16.57  kcal/mol, 
which was lower than previous hits, suggesting that the 
conformational change may prevent the ligand from 
coordinating into heme’s iron atom. Like the three ref-
erence compounds used in this study, CMPND 11121 
interacts with four key amino acids: Ile70, Gly71, 
Met107, and Ser114. Electrostatic interaction analysis 
showed that CMPND27987 contributed the most, aver-
aging −47.66  kcal/mol. The hydrophobic interactions of 
three amino acids—Arg115 (93.8%), Ile133 (97.2%), and 
Val370 (93.8%)—with CMPND 11121 were confirmed by 
molecular docking studies and also observed in andros-
tenedione and formestane.

The third hit, CMPND 7905, was found to form one 
hydrogen bond with the amino acid residue Ala306, 
another catalytic cleft key residue involved in the hydro-
phobic stabilization of the ligand–protein interaction 
[88]. It also forms hydrophobic interactions with impor-
tant residues like Thr310, Ala306, Ile133, Ile305, Trp224, 
Val370, Ala306, Val370, and Leu477 and Van der Waals 
contacts with amino acids Phe134, Arg115, Met374, 
Val373, Leu372, Ser478, and Phe221. CMPND 7905 
forms a sulfur-X bond with residue Asp309 and a Pi-Sul-
fur interaction with Trp224’s ring. Molecular dynamics 
simulations showed that CYP19A1 and CMPND 7905 
maintained stability throughout the study, as shown by 
consistent protein RMSD data. CMPND 7905’s ligand 
RMSD shows a rotational change relative to the active 
site while maintaining binding. Less than one hydrogen 
bond was formed by CMPND 7905 with the protein 
backbone. In the first 100 ns of the study, ProLIF library 
analysis found a hydrogen bond with Val370, supporting 
docking results. CMPND 7905 maintained a stable radius 
of gyration and SASA, but its center of mass distance 
from CYP19A1 fluctuated due to the conformational 
change. Due to its low hydrogen bond count, CMPND 
7905 had the lowest MM-GBSA free binding energy at 
−12.14 kcal/mol. Compared to the three reference com-
pounds, CMPND 7905 shared six amino acids (Ile70, 
Gly71, Ile106, Met107, Ser114, and Arg115) within 1 nm. 
The first three were common to all reference compounds. 
Arg115 (90.2%), Ile133 (99.6%), Phe134 (94.4%), Trp224 
(99%), Ala306 (95.3%), and Val370 (91.9%) had hydropho-
bic interactions.

The final hit, CMPND 7907, did not form hydrogen or 
carbon-hydrogen bonds with human aromatase-binding 
site amino acid residues. It bonded hydrophobically to 
Thr310, Leu477, Hem600, and Val370. Several Van der 

Waals interactions stabilized the ligand in the active site, 
including amino acids Val373, Arg115, Ile133, Ala306, 
Trp224, Ile305, Asp309, Phe221, Ser478, Leu372, Phe134, 
and Met374. The ligand and heme moiety interacted 
electrostatically. Molecular dynamics simulations showed 
that CYP19A1 and CMPND 7907 had stable protein and 
ligand RMSD values throughout the study. Docking pre-
dictions were met when the compound formed less than 
one hydrogen bond with the protein’s backbone, like 
CMPND 7905. The compound’s radius of gyration SASA 
and distance from CYP19A1’s center of mass were stable. 
CMPND 7907 had the second-lowest MM-GBSA free 
binding energy at −12.84 kcal/mol, possibly due to lim-
ited hydrogen bonding. Comparing amino acids within 
1  nm of each compound to three reference compounds 
revealed four common amino acids for CMPND 7907 
(Ile70, Gly71, Ile106, Met107, and Ser114), with the first 
three shared by all references. Ile133 (96.3%), Phe134 
(99.3%), Trp224 (97.6%), Val370 (99.8%), Met374 (95.3%), 
and Leu477 (94.2%) had hydrophobic interactions with 
formestane, which molecular docking studies confirmed.

Conclusions
Inhibition of the human aromatase enzyme is a promis-
ing therapy to combat estrogen-receptor positive breast 
cancer. In this study, we used a merged pharmacoph-
ore model derived from the 3D structure of 3EQM and 
a promising series of ligands containing azaheterocyclic 
rings to screen a marine natural product database for 
potential inhibitors. Among 1,385 identified compounds, 
four candidates emerged, and through molecular dock-
ing and dynamics studies, CMPND 27987 proved to be 
the most stable. The compound had the highest dock-
ing score among the selected candidates and the high-
est MM-GBSA free binding energy across the board. It 
was able to form the highest number of hydrogen bonds 
(at least 3) with the protein’s amino acid backbone, in 
addition to several favorable hydrophobic interactions. 
Molecular dynamics simulations showed stable interac-
tions between CMPND 27987 and CYP19A1, supported 
by several parameters. This study suggests that further 
research, including pharmaceutical development and 
preclinical studies, could advance CMPND 27987 toward 
clinical trials as a potential therapy for the human aro-
matase enzyme.
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