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Abstract 

This study presents a new method for simultaneously quantifying a complex anti-migraine formulation containing 
five components (ergotamine, propyphenazone, caffeine, camylofin, and mecloxamine) using UV spectrophotometry 
and chemometric models. The formulation presents analytical challenges due to the wide variation in component 
concentrations (ERG: PRO: CAF: CAM: MEC ratio of 0.075:20:8:5:4) and highly overlapping UV spectra. To create a com-
prehensive validation dataset, the Kennard-Stone Clustering Algorithm was used to address the limitations of arbitrary 
data partitioning in chemometric methods. Three different chemometric models were evaluated: Classical Least 
Squares (CLS), Partial Least Squares (PLS), and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). 
Among these, MCR-ALS demonstrated excellent performance, achieving recovery values of 98–102% for all compo-
nents, accompanied by minimal root mean square errors of calibration (0.072–0.378) and prediction (0.077–0.404). 
Moreover, the model exhibited high accuracy, with relative errors ranging from 1.936 to 3.121%, bias-corrected mean 
square errors between 0.074 and 0.389, and a good sensitivity (0.2097–1.2898 μg mL−1) for all components. The 
Elliptical Joint Confidence Region analysis further confirmed the predictive performance of the models, with MCR-ALS 
consistently showing the smallest ellipses closest to the ideal point (slope = 1, intercept = 0) for most analytes, indicat-
ing superior accuracy and precision. The approach’s sustainability was rigorously assessed using six advanced met-
rics, validating its environmental friendliness, economic viability, and practical application. This approach effectively 
resolves complex pharmaceutical formulations, contributing to sustainable development objectives in quality control 
processes.
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Introduction
The pursuit of sustainable, cost-effective, and environ-
mentally conscious practices in pharmaceutical analysis 
has become a paramount imperative. The recent market 
launch of a novel fixed-dose anti-migraine formulation 
of ergotamine (ERG), propyphenazone (PRO), caffeine 
(CAF), camylofin (CAM), and mecloxamine (MEC) has 
posed a considerable analytical problem. To date, only 
a single analytical method has been reported for this 
complex mixture [1], and it falls short of aligning with 
the progressive principles of green analytical chemis-
try (GAC) and white analytical chemistry (WAC). The 
existing method’s reliance on harmful solvents, intri-
cate multi-stage procedures, expensive equipment, and 
extensive laboratory infrastructure not only contradicts 
sustainable practices but also poses significant risks to 
human health, the environment, and practical economic 
considerations, necessitating a paradigm shift towards 
the development of innovative analytical approaches that 
embrace these emerging disciplines [2–5].

The quantitative determination of this fixed-dose com-
bination presents significant analytical challenges, pri-
marily due to the vastly different concentrations of its 
components. The challenging ratio of ERG (0.075), PRO 
(20), CAF (8), CAM (5), and MEC (4) requires a method 
with high sensitivity and a wide linear range. ERG, pre-
sent in the lowest concentration, demands exceptional 
sensitivity for accurate quantification. Its instability and 
light sensitivity further complicate analysis. PRO, the 
highest concentrated component, necessitates careful 
sample preparation to avoid detector saturation while 
maintaining the working range. CAF, a common ingre-
dient in many formulations, may introduce potential 
interferences. CAM and MEC, present in intermediate 
concentrations, add to the complexity of the mixture due 
to potential spectral overlaps, as shown in (Fig. 1). More-
over, the structural similarities and potential interactions 
between these compounds can lead to matrix effects, 
further complicating their simultaneous determina-
tion. These factors collectively underscore the need for a 
robust, sensitive, and selective analytical method capable 
of accurately quantifying all five components in a single 
analysis.

In this framework, UV–visible (UV–Vis) spectropho-
tometry presents itself as an effective approach, aligning 
with the sustainability goals of modern analytical chem-
istry. It offers a cost-efficient solution by utilizing afforda-
ble reagents and simple apparatus, including cuvettes and 
light sources, while producing minimal hazardous waste. 
This technique adheres to the tenets of both GAC and 
WAC [6, 7]. However, significant spectral overlaps fre-
quently make it difficult to directly quantify pharmaceu-
ticals [8], a challenge that can be surmounted through the 

strategic implementation of chemometrics solutions. By 
harnessing the power of chemometrics, UV–visible spec-
troscopy is transformed into a practical green analytical 
tool, ideally suited for efficient and sustainable pharma-
ceutical quality control workflows [9–12].

A common pitfall in numerous recent chemometrics 
research studies is the reliance on random partitioning 
to segregate the sample data into training and validation 
subsets [13, 14]. Even though random splitting is simple, 
it can result in validation sets that do not adequately rep-
resent the full sample space, potentially leading to biased 
outcomes or an overestimation of the model’s accuracy. 
This outcome directly contradicts the sustainable objec-
tives of resource efficiency and reliability. To surmount 
this formidable challenge, our research harnesses the 
Kennard Stone Clustering Algorithm (KSC), an advanced 
statistical approach, to construct truly representative 
validation sets [15]. This method partitions the modeled 
variable space into distinct clusters, ensuring that vali-
dation samples encompass the full spectrum and distri-
bution of each variable. This meticulous clustering and 
sample selection strategy comprehensively covers the 
sample space, enabling an unbiased assessment of the 
chemometric model’s predictive capabilities across all 
data domains. KSC enhances analytical sustainability by 
minimizing material consumption and waste generation 
while bolstering reliability through fewer, strategically 
distributed validation samples.

In this context, our study addresses five crucial objec-
tives: (1) Developing an environmentally benign, highly 
sensitive, and cost-effective chemometric quantification 
method for ERG, PRO, CAF, CAM, and MEC without 
prior separation, marking a significant improvement over 
the existing method; (2) Positioning chemometrics as a 
sustainable analytical alternative to traditional methods, 
facilitating economical and routine quality control pro-
cesses; (3) Systematically leveraging KSC to construct 
validation sets that rigorously assess predictive reliabil-
ity across all concentration ranges, minimizing bias and 
overfitting; (4) Conducting a comprehensive greenness 
evaluation using state-of-the-art tools including the Car-
bon Footprint Analysis (CFA), National Environmental 
Method Index (NEMI), Complementary Green Analyti-
cal Procedure Index (Complex GAPI), and Analytical 
Greenness Metric (AGREE) analysis, providing a multi-
faceted assessment of environmental impact; and (5) Pio-
neering "whiteness" and "blueness" assessments through 
the novel application of the Blue Applicability Grade 
Index (BAGI) and Red–Green–Blue 12 (RGB12) metrics, 
quantifying the practicality, sustainability, analytical per-
formance, and cost-effectiveness advantages over existing 
methods. This innovative approach heralds a paradigm 
shift towards eco-friendly, cost-effective, and practical 
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analytical strategies, aligning with sustainable develop-
ment principles and quality control excellence in phar-
maceutical analysis.

Experimental
Analytical instruments and apparatus
Gathering spectral information was accomplished utiliz-
ing a Shimadzu UV-1800 double-beam spectrophotome-
ter equipped with 1 cm quartz cells. Coupled with quartz 
cuvettes of 1 cm path length. The instrument’s operation 
was managed through UV-Probe software (version 2.42). 

To optimize spectral resolution and data density, we con-
figured the spectrophotometer with a slit width of 1.0 nm 
and implemented a fine-grained 0.1  nm sampling inter-
val. Measurements were conducted in fast scan mode 
with a single sweep to balance efficiency and data quality. 
In addition, a high-precision Shimadzu analytical balance 
(AGE-220) was utilized for accurate sample prepara-
tion, and an ultrasonic bath for extraction was provided 
by Julabo Labortechnik of Germany. We processed the 
data and performed chemometrics analysis using Matlab 
R2013a with PLS Toolbox v2.0 and MCR-ALS Toolbox 

Fig. 1  The chemical structure of ERG, PRO, CAF, CAM, and MEC
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(an allowed program accessible at http://​www.​mcrals.​
info). To implement KSC, we used the built-in scripts of 
MATLAB R2013a (version 8.2.0.701), which make use of 
advanced statistical algorithms.

Chemicals and materials
All chemicals were of analytical grade. We got ERG, 
PRO, CAF, CAM and MEC as reference standard com-
pounds from the National Organization for Drug Con-
trol and Research of Egypt. They were certified to be 
99.58%, 99.39%, 99.75%, 99.63% and 99.72% pure, respec-
tively. Ethanol was bought from Sigma Aldrich Co., 
St.Louis, USA. The SPASMOMIGRAINE® tablets (batch 
no: S2456) made by Kahira Pharmaceuticals & Chemi-
cal Industries Company (Cairo, Egypt) and containing 
0.75  mg ERG, 200  mg PRO, 80  mg CAF, 50  mg CAM 
and 40 mg MEC in each tablet, was bought from a local 
pharmacy.

Standard solutions
We prepared primary stock solutions for ERG, PRO, CAF, 
CAM, and MEC at a concentration of 1000 μg mL−1. This 
process involved precise weighing of 100 mg of each ref-
erence standard using an analytical balance, followed by 
dissolution in ethanol within 100  mL volumetric flasks. 
The solutions were then brought to volume with meticu-
lous attention to the meniscus. The stock solutions exhib-
ited stability for one month when refrigerated at 4  °C. 
To attain the requisite concentration ranges for analy-
sis, we performed daily dilutions of the stock solutions 
using ethanol to create fresh working standard solutions, 
ensuring optimal sample integrity.

Working range and spectral properties
To elucidate the spectral characteristics of each analyte, 
we acquired individual UV absorption spectra for ERG, 
PRO, CAF, CAM, and MEC across the 200–400  nm 
wavelength range. For this spectral profiling, we utilized 
standard solutions with concentrations of 1  μg  mL−1 
ERG, 20 μg mL−1 PRO, 8 μg mL−1 CAF, 5 μg mL−1 CAM, 
and 4 μg mL−1 MEC. These specific concentrations were 
strategically selected to bridge the gap between phar-
maceutical formulation ratios and the linear dynamic 
range of our analytical method. To establish and vali-
date the method’s working range, we conducted a com-
prehensive analysis of ERG, PRO, CAF, CAM, and MEC 
mixtures, scanning from 200 to 400  nm. The concen-
tration working ranges were carefully optimized for 
each analyte: 1–5 μg  mL−1 for ERG, 10–30 μg  mL−1 for 
PRO, 4–12  μg  mL−1 for CAF, 1–9  μg  mL−1 for CAM, 
and 2–6  μg  mL−1 for MEC. These meticulously chosen 
intervals served a dual purpose: they aligned with the 
linear response capabilities of our spectrophotometric 

instrumentation while accurately reflecting the antici-
pated concentration levels in pharmaceutical formula-
tions, thereby ensuring robust analytical performance 
across the relevant concentration domain.

Methodology and design of experiment
A methodical experimental outline is essential for attain-
ing spectral data that is both representative and abundant 
in information. A multiple-level, and multiple-factor cali-
bration set consisting of twenty-five mixtures was devel-
oped, following the strategy presented by Brereton et al. 
[16]. As a result, a set of 25 mixes was created for cali-
bration with different ERG, PRO, CAF, CAM and MEC 
concentrations ranging from 1 to 5, 10–30, 4–12, 1–9, 
and 2–6 μg  mL−1 for ERG, PRO, CAF, CAM and MEC, 
respectively. KSC was used to build a validation set that 
reliably validates the model and provides an illustrative 
sample of the concentration space. To construct a robust 
validation set, we implemented a stratified sampling 
approach, splitting the concentration range into thirteen 
equally probable strata. From each stratum, we selected 
one unique mixture, resulting in a comprehensive set of 
13 distinct validation samples. This sampling strategy 
ensures thorough coverage of the entire concentration 
domain, enhancing the reliability of our method valida-
tion. Sample preparation was executed with precision 
using calibrated micropipettes for accurate volume trans-
fers. Ethanol served as our solvent of choice, balancing 
effective analyte dissolution with environmental consid-
erations. All mixes were formulated in 25  mL volumet-
ric flasks, ensuring consistent and precise final volumes. 
Spectral acquisition was performed using 1  cm quartz 
cuvettes, chosen for their superior optical properties and 
chemical inertness. We recorded absorption spectra over 
200–400  nm wavelength range, capturing the full UV 
spectral fingerprint of our analytes. To account for back-
ground absorbance and ensure measurement accuracy, 
we employed ethanol as a blank reference. This carefully 
designed experimental approach not only meets the rig-
orous standards of analytical method development but 
also demonstrates our commitment to sustainable and 
responsible scientific practices in pharmaceutical analy-
sis. Lower and higher spectral ranges were thrown out 
because they had too much noise or no signals, making 
the working spectral data matrix 220–350  nm with a 
resolution of 1 nm (131 data points), as shown in (Fig. 2). 
This spectrum information was used to create and verify 
the chemometric models.

Models’ development and refinement
Our study employed three distinct chemometric 
regression approaches: classical least squares (CLS), 
partial least squares (PLS), and multivariate curve 

http://www.mcrals.info
http://www.mcrals.info
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resolution-alternating least squares (MCR-ALS). To 
ensure model robustness and mitigate overfitting, we 
meticulously optimized each calibration model using a 
comprehensive 25-mixture design calibration set. For 
the CLS model, we implemented a wavelength-specific 
regression strategy, eschewing the integration of results 
into latent variables (LVs). To enhance model perfor-
mance, we utilized a moving window wavelength selec-
tion technique. We systematically evaluated window 
widths from 5 to 30 nm via cross-validation to determine 
the ideal spectral smoothing level that effectively reduces 
noise while preserving crucial quantitative information. 
In developing the PLS model, we methodically varied 
the number of LVs from 1 to 10. The optimal LV count 
was determined using Venetian blinds cross-validation, 
with the root mean squared error of cross-validation 
(RMSECV) serving as our performance metric. This 
approach allowed us to strike a balance between model 
fit and complexity. For the MCR-ALS model, constraint 
optimization played a pivotal role in calibration refine-
ment. We applied non-negative least squares (nnl) or 
non-negativity constraints to both spectral profiles and 
concentration. This strategy facilitated the attainment 
of satisfactory parameters with minimal iterative cycles, 
enhancing computational efficiency. Through this rigor-
ous optimization process, we aimed to develop highly 
reliable and accurate chemometric models capable of 

addressing the complex analytical challenges presented 
by our multi-component pharmaceutical formulation.

Analytical performance metrics
The predictive power, robustness, precision, accuracy, 
and sensitivity of the optimized models were assessed by 
computing a number of critical parameters [17]. Using 
the calibration set spectra, root mean square error of 
calibration (RMSEC), standard error of calibration (SEC), 
and RMSECV were calculated as pointers of the model’s 
fitting and predictive power on the calibration set.

Relative root mean square error of prediction (RRM-
SEP) was used to quantify predictive accuracy for valida-
tion set performance. Using the root mean square error 
of prediction (RMSEP), the generalization ability of the 
model was evaluated overall. Additionally, bias-corrected 
mean square error of prediction (BCRMSEP) was used to 
assess the precision and predictability of fresh samples. 
To compute RMSEP, RMSECV, and RMSEC, we use the 
following equations [17]:

The subsequent equations were employed to calculate 
the further metrics of merit:

RMSE =

√∑n
i=1(yi − ŷi)2

n
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Fig. 2  The zero-order absorption spectrum of ERG, PRO, CAF, CAM, and MEC
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The outcome of the cross-validation (RMSECV), vali-
dation (RMSEP), and calibration (RMSEC) procedures is 
denoted by the value yi. The variables n, and yi represent 
the overall number of samples, and the experimental out-
come for sample i, respectively.

To assess the accuracy, (2, 3, and 4 μg mL−1) for ERG, 
(15, 20, and 25 μg mL−1) for PRO, (6, 8, and 10 μg mL−1) 
for CAF, (3, 5, and 7  μg  mL−1) for CAM and (3, 4, and 
5  μg  mL−1) for MEC were determined in triplicate at 
three different concentrations inside the linear range, and 
the percent recoveries (%R) were calculated. The percent 
relative standard deviation (%RSD) quantified precision 
for repeatability (intra-day) and intermediate (inter-day) 
precision. Three different samples were tested three 
times, once on the same day and three times on three dif-
ferent days, (2, 3, and 4 μg  mL−1) for ERG, (15, 20, and 
25 μg mL−1) for PRO, (6, 8, and 10 μg mL−1) for CAF, (3, 
5, and 7 μg mL−1) for CAM and (3, 4, and 5 μg mL−1) for 
MEC. Robustness was evaluated through experiments 
employing marginally different wavelength intervals 
(0.9  nm as opposed to 1  nm), scan speeds (medium as 
opposed to fast scan), and spectral bandwidths (0.8  nm 
as opposed to 1 nm slit width). The method’s robustness 
was shown by its capacity to endure these alterations. To 
evaluate sensitivity, net analyte signals were utilized to 
compute the limits of quantification (LOQ) and detec-
tion (LOD). This inclusive validation offers a detailed 
insight into how well, accurately, precisely, sensitively, 
and robustly the models we made can predict the analysis 
of pharmaceutical mixtures.

Pharmaceutical dosage forms analysis
The content of 10 tablets of SPASMOMIGRAINE® 
tablets was accurately weighed, finely powdered, and 
thoroughly mixed. A quantity of powder equivalent to 
0.75 mg ERG, 200 mg PRO, 80 mg CAF, 50 mg CAM, and 
40 mg MEC was transferred into a volumetric flask with a 
capacity of 100 mL. To extract the drugs into the solution, 
about 80 mL of ethanol was added, and it was sonicated 

Bias =

∑n
i=1(yi − ŷi)

n

SEC =

√∑n
i=1(yi − ŷi − bias)2

n− 1

RRMSEP% =

1
n

√∑n
i=1(yi − ŷi)2

yi
X100

BCRMSEP =

∑n
i=1(yi − ŷi)2

n
− (bias)2

for 15  min. The volume was filled with ethanol, thor-
oughly mixed, and then diluted with ethanol to obtain 
concentrations of 7.5 μg mL−1 ERG, 2000 μg mL−1 PRO, 
800 μg mL−1 CAF, 500 μg mL−1 CAM, and 400 μg mL−1 
MEC. Subsequently, the mixture underwent filtration 
utilizing a 0.45 μm membrane filter. Appropriate aliquots 
of the clear filtrate were diluted with ethanol in volumet-
ric flasks (10 mL). At this stage, while the concentrations 
of PRO, CAF, CAM, and MEC fell within their respec-
tive linear ranges, the ERG concentration was below the 
limit of quantification. To address this, a standard addi-
tion approach was employed. A 1.5 μg mL−1 ERG stand-
ard solution was added to each determination, bringing 
the total ERG concentration within the working range. 
These diluted sample solutions’ absorption spectra were 
obtained between 200 and 400 nm in relation to an etha-
nol blank. The spectra were examined using the proposed 
chemometric models to calculate the concentrations of 
ERG, PRO, CAF, CAM, and MEC in the pharmaceutical 
mixture. By subtracting the additional standard concen-
tration from the total measured concentration, the true 
ERG concentration in the samples was determined. The 
accuracy was measured by the addition of spiked stand-
ards in triplicate at 4 distinct levels of concentration. We 
calculated RSD% and R%.

Results and discussion
Green solvent selection
Evaluation using GSST tool
An essential component of achieving sustainability in 
analytical procedures is choosing the right green sol-
vents. A number of pharmaceutical companies have pub-
lished solvent sustainability recommendations that use 
data from safety data sheets (SDS) to analyze the advan-
tages and disadvantages of recommended solvents. These 
companies include GlaxoSmithKline, Sanofi, and Pfizer, 
among many others. We used a solvent selection tool that 
was recently introduced by Larsen et  al. [18] to help us 
with this process. Using this chemometric tool, we can 
compare and evaluate solvents quantitatively according 
to important eco-friendliness criteria like health, safety, 
environmental impact, and waste management. For every 
solvent, it computes a composite greenness score (G), 
where higher scores correspond to more sustainability. 
We used this tool with seven different polar solvents, 
including acetonitrile, ethyl acetate, ethanol, hexane, 
chloroform, and water. Water, acetonitrile, ethyl acetate, 
ethanol, and methanol had much higher G scores than 
harmful solvents like hexane and chloroform, according 
to the software analysis (Fig. 3). To illustrate, acetonitrile, 
water, ethyl acetate, ethanol, and methanol all achieved 
high G scores —7.3, 6.7, 6.6, 5.8, and 5.8, respectively, 
according to positive evaluations in the areas of health 
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effects, safety, environmental effects, and waste disposal. 
As illustrated in (Fig.  3). We chose acetonitrile, water, 
ethyl acetate, ethanol, and methanol as more environ-
mentally friendly solvents for additional evaluation based 
on these greenness evaluations. This fits in with our 
plan to create an analytical technique that follows green 

chemistry philosophies by using safer, more environmen-
tally friendly chemicals.

SDAGI assessment
Even though tools such as GSST facilitate initial sol-
vent selection, a more thorough evaluation of reagent 

Fig. 3  a G scores by GSST attained by the online tool. b Spider diagram attained by SDAGI
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greenness utilizing comprehensive investigational data 
is required. When assessing solvent and reagent green-
ness, the SDAGI tool offers a useful qualitative technique 
that is dependent on SDS data [19, 20]. This approach 
uses Safety, Health, and Environmental (SHE) data on 
the properties and effects of reagents. Greenness rat-
ings based on important criteria can be computed and 
visual spider diagrams can be made to evaluate a solvent’s 
greenness. Marks from -5 to + 5, derived from the five 
assessment subcategories of fire safety, general proper-
ties, health impact, stability, and odor are displayed in the 
hierarchical spider plot. Secondary spider charts show 
subgroup specifics, as (Fig. 3) demonstrates. Using a spi-
der diagram to evaluate and compare chemicals visually 
is a straightforward way. The percentage of the avail-
able data that was used to generate the Greenness Index 
outputs is shown in the "Greenness Index Table". Using 
SDAGI, we examined SDS data and discovered that, as 
indicated in (Table  S1), methanol and acetonitrile had 
scores of -0.12 and -0.30, while ethanol and ethyl acetate 
showed larger safety zones and elevated average green-
ness scores (1.33 and 1.44 for ethanol and ethyl acetate, 
respectively). Water, ethyl acetate, and ethanol were 
therefore chosen as the more environmentally friendly 
solvents for more testing in order to determine which 
green solvent would be best. However, after evaluating 
the UV spectra of ERG, PRO, CAF, CAM and MEC in the 
3 solvents, we found that ethanol provided a higher UV 
response and better spectral shape compared to water 
and ethyl acetate. Considering the superior UV analytical 
performance of ethanol along with its environmentally 
friendly nature, we concluded that ethanol is the most 
suitable green solvent for further studies involving ERG, 
PRO, CAF, CAM and MEC.

Development of CLS, PLS, and MCR‑ALS chemometric 
models
The complex spectral profiles of ERG, PRO, CAF, CAM 
and MEC exhibit significant overlap in their UV absorp-
tion spectra, as evidenced in (Fig.  2). This spectral 
congestion precludes direct quantification through con-
ventional univariate methods, necessitating the applica-
tion of advanced chemometric models [21–23]. To tackle 
this analytical challenge, we developed and optimized 
three multivariate chemometric models using the com-
plete spectrum data of the five-component mixture.

Spectral data acquisition was performed over the range 
of 200–400  nm, capturing the characteristic UV–vis 
fingerprints of the analytes. While these spectral signa-
tures encode the requisite concentration information, the 
substantial overlap impedes straightforward correlation 
between absorbance and analyte levels. Chemometric 

modeling enables the extraction of latent concentration 
data from the intricate spectral matrix.

An essential phase in model building entailed the care-
ful selection of spectral areas to enhance valuable signals 
while reducing the impact of noise and spectral artifacts. 
Using an iterative optimization procedure, including 
signal-to-noise ratios, probable interferents, and prelimi-
nary model performance measurements, we established 
an ideal spectral window of 220–350  nm, yielding 131 
data points per spectrum. The resultant data matrix was 
utilized as input for the development and optimization of 
CLS, PLS, and MCR-ALS models employing MATLAB 
software.

To validate the fundamental assumption of spectral 
additivity underpinning CLS and MCR-ALS models, we 
conducted a rigorous additivity assessment. This evalu-
ation involved the preparation of a synthetic standard 
mixture mirroring the concentrations found in the phar-
maceutical formulation. We then acquired and compared 
three distinct spectral profiles: (1) The UV spectrum of 
the synthetic standard mixture, (2) the spectrum of the 
actual pharmaceutical formulation, and (3) a compos-
ite spectrum generated by the mathematical summa-
tion of individual component spectra at their respective 
concentrations.

Comparative analysis revealed remarkable concord-
ance among these spectra, with deviations not exceeding 
2% at any wavelength across the analytical range. Spectral 
features, including peak positions and relative intensities, 
demonstrated high consistency. Notably, we observed no 
emergent peaks or spectral shifts in the mixture spec-
tra relative to the calculated composite, indicating the 
absence of significant inter-analyte interactions (Fig. S1).

Statistical evaluation using a paired t-test to compare 
absorbance values between the synthetic mixture spec-
trum and the mathematically derived composite showed 
no statistically significant differences (p > 0.05) across all 
wavelengths. Furthermore, residual analysis of the dif-
ference spectrum between these two profiles revealed 
only stochastic noise, devoid of systematic deviations. 
These findings provide robust support for the additivity 
assumption, confirming the absence of spectral-altering 
interactions among the analytes in the mixture state. 
This validation substantiates the applicability of CLS and 
MCR-ALS models alongside PLS for this complex ana-
lytical system.

Calibration set design
To find the best combination of the three components for 
the calibration set, we used an experimental design with 
multiple levels and factors that Brereton et  al. [16] sug-
gested to create 25 different mixtures. Improved model 
accuracy is achieved by using this approach to create 
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analyte concentration profiles that are not correlated. 
Different concentrations were tested at five levels, with 
0 being the middle point and the others being −2, −1, 
0, + 1, and + 2 As shown in (Table  1). The analyte pro-
files’ lack of correlation and the structured variation in 
concentrations help the model more successfully sepa-
rate each component’s spectrum impact. As a result, 
the quantification accuracy is improved, and overfitting 
is prevented. This saved time and money in the lab by 
reducing the quantity of materials used, chemical waste, 
and calibration sample requirements, consequently, mak-
ing the method more environmentally compatible. In 
general, the calibrations design of multilevel and multi-
factor enhanced reliability and accuracy through careful 
modeling and selection of the complete analyte concen-
tration spectrum. This aligns with the fundamental ideas 
that guide the creation of ecologically friendly analytical 
procedures.

Design and optimization of validation set
In order to provide a thorough assessment of the predic-
tive abilities, the validation set must include all concen-
tration ranges predicted in the calibration procedure. 
Simple random sampling carries the risk of incomplete 
coverage, which could result in prejudiced accuracy esti-
mates. To address this crucial constraint, the validation 
set was carefully created using the KSC. To create a solid 
and representative validation set that covers the whole 
multivariate concentration space, the KSC algorithm is 
carefully used. MATLAB was used to run the KSC algo-
rithm with the aid of pre-written scripts. The multicom-
ponent concentration data was methodically stratified 
into discrete clusters along several dimensions by these 
scripts. One validation sample was chosen from each 
stratum, which corresponds to a concentration regime 
that is equally likely. This approach ensured comprehen-
sive and equitable coverage of the full analyte concen-
tration ranges and their combinatorial distributions. By 
optimally distributing validation samples across clustered 
data strata, KSC mitigated potential biases arising from 
incomplete coverage or uneven sample densities within 
the multivariate space. This meticulous, statistically 
grounded sampling technique enabled a relatively small, 
but very informative, validation set of 13 mixtures that 
could rigorously test the predictive power of the chem-
ometric models over the whole range of expected sam-
ple compositions, as presented in (Table  1). The scatter 
plots in (Figs. 4, 5) show how a consistent scattering pat-
tern was formed by the thirteen validation samples over 
the whole analyte range. The KSC algorithm acquired 
broad coverage with markedly fewer samples than stand-
ard random sampling. Through improved concentration 
space sampling efficiency, the KSC algorithm allowed a 

smaller but more informative validation set to be applied. 
This tactic decreased the number of materials used, the 
amount of waste produced, and the related expenses, 
which enhanced the method’s greenness. Furthermore, 
the model’s resilience in managing diverse combinations 

Table 1  The five-level five-factor experimental design of 25 
calibrations mixtures together with the 13 validation set mixtures 
used in the chemometric methods

Mix no Calibration set (µg/mL)

ERG PRO CAF CAM MEC

1 3 20 8 5 4

2 3 10 4 9 3

3 1 10 12 3 6

4 1 30 6 9 4

5 5 15 12 5 3

6 2 30 8 3 3

7 5 20 6 3 5

8 3 15 6 7 6

9 2 15 10 9 5

10 2 25 12 7 4

11 4 30 10 5 6

12 5 25 8 9 6

13 4 20 12 9 2

14 3 30 12 1 5

15 5 30 4 7 2

16 5 10 10 1 4

17 1 25 4 5 5

18 4 10 8 7 5

19 1 20 10 7 3

20 3 25 10 3 2

21 4 25 6 1 3

22 4 15 4 3 4

23 2 10 6 5 2

24 1 15 8 1 2

25 2 20 4 1 6

Validation set (µg/mL)

 1 3 15 11 2 4

 2 3 23 8 4 3

 3 2 13 8 3 2

 4 4 13 6 8 4

 5 3 26 10 9 6

 6 1 21 4 2 4

 7 2 29 7 5 4

 8 2 17 5 5 3

 9 4 10 6 6 5

 10 4 24 11 7 3

 11 2 28 9 8 4

 12 5 18 8 2 5

 13 4 21 12 6 5
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Fig. 4  2D scatter plot of the validation set of (a) CAF versus CAM, b CAF versus MEC, c ERG versus CAF, d ERG versus CAM, e ERG versus MEC, and f 
CAM versus MEC designed by KSC design as optimal-space filling design
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of pharmaceutical compounds was shown by the precise 
predictions made on this meticulously prepared KSC 
validation set. This successfully avoided the erroneous or 
excessively optimistic accuracy estimations that can arise 
from insufficient sample variety and coverage in the vali-
dation set.

CLS model
The multivariate linear regression employed by the CLS 
model, referred to as K-matrix calibration, is founded 
on the Beer-Lambert law. Calibration samples require 
analyte concentrations and spectral characteristics [24]. 
CLS makes the assumption that absorbance and concen-
tration for each component have a linear relationship. 
Though the calibration set was used to build CLS models, 

initial predictions were inadequate. However, incorpo-
rating an intercept term greatly enhanced results, result-
ing in exceptional recovery percentages of 99.65, 100.14, 
100.89, 100.41, and 99.38% for ERG, PRO, CAF, CAM 
and MEC respectively. While simple, CLS has trouble 
with interactions and nonlinearity. All things considered, 
it offered a fair foundation for analysis, eventually being 
exceeded by more advanced chemometric models.

PLS model
The PLS model is an additional popular chemomet-
ric model that integrates PCA and regression analy-
sis. It optimizes the correlation amidst concentrations 
as response variables and spectra as predictor vari-
ables. This retains elements that are significantly more 

Fig. 5  2D scatter plot of the validation set of (a) ERG versus PRO, b PRO versus CAM, c PRO versus MEC, and d PRO versus CAF designed by KSC 
design as optimal-space filling design
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associated with concentration prediction. PLS steadily 
creates these latent variables by removing asymmetrical 
spectral data which is useless for estimating concentra-
tions. We used leave-one-out cross-validation to ascer-
tain the optimal number of PLS factors [13]. As shown in 
(Fig. 6), five LVs in this investigation had the best mode-
ling results for ERG, PRO, CAF, CAM, and MEC, accom-
panied by RMSECV values of 0.062, 0.330, 0.129, 0.026, 
and 0.019.

MCR‑ALS model
The MCR is a powerful chemometric model designed to 
elucidate the underlying spectral and concentration char-
acteristics of distinct components within intricate combi-
nations, even in the absence of a priori information. The 
MCR approach employs a bilinear model to decompose 
the spectral data matrix, yielding significant informa-
tion regarding the sample’s chemical composition. In our 
study, we implemented the MCR-ALS algorithm, which 
proceeds through several key steps.

Initially, we employed Evolving Factor Analysis (EFA) 
with a log eigenvalue threshold of -4 to estimate the 
number of components present in the mixture. This 
was followed by an Alternating Least Squares (ALS) 
optimization process, which iteratively refines the con-
centration and spectral profiles subject to user-defined 
constraints. The process continues until convergence, 
defined by a relative change in the standard devia-
tion of residuals falling below a predefined threshold. 
Upon convergence, the algorithm produces three key 
matrices: the resolved spectral profiles, concentra-
tion profiles, and associated error matrix [10, 25]. In 
our implementation, we initially employed a three-
factor model based on the EFA results. However, as the 

MCR-ALS iterations progressed, it became evident that 
a five-component model was necessary to accurately 
represent all analytes in the formulation. We applied 
non-negativity constraints to both spectral profiles and 
concentration, ensuring physically meaningful results, 
and implemented correlation constraints for the con-
centration profiles to account for potential interfer-
ences [26]. The MCR-ALS algorithm converged after 
15 iterations, achieving the predetermined convergence 
criterion of 20%.

To validate the accuracy of the spectral recovery, we 
performed a Cosine Similarity Analysis between the 
MCR-ALS resolved spectra and the independently 
measured pure component spectra. Cosine similar-
ity provides a quantitative measure of how closely the 
recovered spectra match the true spectra, with values 
approaching 1 indicating a near-perfect match. The 
cosine similarity is defined as:

where A and B are the vectors representing the recovered 
and standard spectra, respectively.

This analysis revealed excellent recovery for most 
components, with cosine similarity values exceeding 
0.99 for PRO (0.998), MEC (0.997), ERG (0.996), and 
CAF (0.995). A slightly lower, yet still acceptable, simi-
larity value was observed for CAM (0.982), indicating 
some minor deviations in its recovered spectral profile, 
likely due to spectral overlap with other components. 
This comprehensive similarity assessment provides 
quantitative validation of the model’s spectral resolu-
tion capabilities, with an average cosine similarity of 
0.994 (standard deviation: 0.006) across all compo-
nents, as presented in (Table S2).

The model demonstrated excellent performance, with 
a variance explained (R2) of 100% and a remarkably low 
lack of fit (0.0057%), indicating a high degree of agree-
ment between the model and experimental data. (Fig. 7) 
presents the resolved pure spectral profiles obtained 
from the MCR-ALS analysis. The profiles show a high 
level of concordance with the measured absorption spec-
tra of the individual components, validating the model’s 
ability to accurately deconvolute the overlapping spectral 
data. The application of MCR-ALS provided both quan-
titative precision and qualitative insights into the sam-
ple, demonstrating its dual capability in spectroscopic 
analysis. This capability is particularly useful for resolving 
complex formulations like the one studied, where over-
lapping spectra from multiple components create signifi-
cant challenges for analysis.

To further investigate the uncertainty inherent in 
the MCR-ALS model, a Comprehensive Rotational 

cos(θ) = (A · B) /
(∣∣∣∣A
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Ambiguity Assessment was conducted using the MCR-
BANDS algorithm. This assessment quantified the Area 
of Feasible Solutions (AFS), the Average Range of Fea-
sible Solutions (Avg RFS), the Maximum Range of Fea-
sible Solutions (Max RFS), and identified the critical 
wavelengths where ambiguity was most pronounced. 
As shown in (Table S3), the AFS for ERG was 7.2%, with 
an average RFS of 0.011 AU and a maximum RFS of 

0.024 AU at a critical wavelength of 278 ± 2 nm, result-
ing in minimal impact on quantitation (< 2.1%). PRO 
exhibited the lowest ambiguity, with an AFS of 4.5%, an 
average RFS of 0.008 AU, and a maximum RFS of 0.018 
AU at 242 ± 1  nm, with negligible impact on quantita-
tion (< 1.4%). CAF had moderate ambiguity, with an 
AFS of 5.8%, an average RFS of 0.009 AU, and a maxi-
mum RFS of 0.021 AU at 273 ± 2  nm, resulting in a 
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Fig. 7  Absorption spectra and resolved spectra estimated by MCR-ALS algorithm
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minor impact on quantitation (< 1.8%). CAM showed 
the highest ambiguity, with an AFS of 8.9%, an aver-
age RFS of 0.015 AU, and a maximum RFS of 0.029 AU 
at 265 ± 3  nm, leading to a moderate impact on quan-
titation (< 3.2%). MEC exhibited moderate ambiguity, 
with an AFS of 6.3%, an average RFS of 0.010 AU, and a 
maximum RFS of 0.022 AU at 260 ± 2 nm, with a minor 
impact on quantitation (< 1.9%). The overall mean AFS 
across all components was 6.54%, with a standard devi-
ation of 1.68%, indicating moderate ambiguity across 
the components. The correlation coefficient between 
AFS and quantitation impact was 0.92, suggesting a 
strong correlation between rotational ambiguity and its 
effect on quantitative results. Detailed analysis of each 
component revealed that despite moderate ambiguity 
for ERG, its well-defined spectral features minimized 
the impact on quantitation, with a selectivity index of 
0.89. PRO showed the lowest ambiguity and highest 
selectivity index (0.94), thanks to its higher concentra-
tion and stable spectral features. CAF also had moder-
ate ambiguity, but its distinct spectral profile ensured 
reliable resolution, with a selectivity index of 0.91. 
CAM displayed the highest ambiguity due to signifi-
cant spectral overlap, reflected in its selectivity index 
of 0.85. This suggests that additional constraints may 
be beneficial for further reducing ambiguity for CAM. 
MEC was well-resolved from other components, with 
moderate ambiguity and a selectivity index of 0.90. 
To mitigate the impact of ambiguity, correlation con-
straints were employed, reducing the AFS by an average 
of 42%, while non-negativity constraints provided addi-
tional stability. Local rank analysis further improved 
the resolution, particularly for CAM and MEC, where 
spectral overlap was more pronounced. The overall AFS 
values, all below 10%, indicate good stability and reli-
able quantitation for all components. However, CAM 

requires careful consideration due to its higher ambigu-
ity, which has been factored into the final concentration 
determinations. These results demonstrate the robust-
ness and versatility of the MCR-ALS model in resolving 
complex mixtures, ensuring both accurate quantifica-
tion and valuable qualitative insights.

Validation of the chemometric models
The assessment of predictive abilities was conducted 
utilizing an external validation set comprising thirteen 
mixtures produced from KSC. These validation mixtures 
were not integrated into the model construction process, 
though their concentration levels remained within the 
working range employed to develop the models, as dem-
onstrated in (Table  1). To assess their predictive power, 
the newly constructed analytical models were applied to 
these validation mixtures, with the estimated concentra-
tions for each component presented in (Table 1).

To statistically evaluate the accuracy of the predictions, 
Student’s t-test was performed for each analyte across all 
three models (CLS, PLS, and MCR-ALS) to determine 
if the mean recoveries were significantly different from 
100% [27]. The critical t values at 95% and 98% confi-
dence levels (df = 12) were 2.179 and 3.055, respectively. 
For the CLS model, experimental t values ranged from 
0.522 to 2.359, with only PRO showing a significant dif-
ference from 100% (texp = 2.359). The PLS model exhib-
ited similar results, with experimental t values between 
0.174 and 2.349, again with PRO being significantly dif-
ferent from 100% (texp = 2.349). The MCR-ALS model 
demonstrated the most consistent results, with experi-
mental t values ranging from 0.334 to 1.980, indicating 
no significant differences from 100% for any analyte at 
both confidence levels, as shown in (Table S4).

The root mean square error of prediction (RMSEP) val-
ues were determined to be minimal, with the MCR-ALS 

Table 2  Determination of ERG, PRO, CAF, CAM, and MEC in the calibration and validation set of the suggested methods

a Root Mean Square Error of calibration
b Root Mean Square Error of predication

CLS PLS MCR-ALS

ERG PRO CAF CAM MEC ERG PRO CAF CAM MEC ERG PRO CAF CAM MEC

Calibration set MEAN 99.65 100.14 100.89 100.41 99.38 99.69 99.99 100.88 100.12 99.49 99.96 99.86 100.32 99.94 99.56

SD 1.550 1.522 1.110 1.566 1.414 1.293 1.340 1.117 1.385 1.272 0.679 1.083 0.837 0.807 0.823

%RSD 1.555 1.520 1.100 1.560 1.423 1.297 1.340 1.107 1.383 1.279 0.679 1.085 0.834 0.807 0.827

RMSECa 0.087 0.456 0.231 0.178 0.104 0.079 0.415 0.210 0.162 0.094 0.072 0.378 0.191 0.147 0.086

Validation set MEAN 100.12 100.64 100.82 99.79 100.32 100.07 100.41 100.82 99.94 100.10 100.10 100.14 100.31 99.89 99.99

SD 0.517 1.472 1.255 1.452 0.78 0.310 1.143 1.260 1.243 0.370 0.182 0.526 0.603 0.664 0.108

%RSD 0.516 1.463 1.245 1.455 0.778 0.310 1.138 1.250 1.244 0.370 0.182 0.525 0.601 0.665 0.108

RMSEPb 0.093 0.487 0.249 0.189 0.112 0.085 0.443 0.226 0.172 0.102 0.077 0.404 0.205 0.156 0.093
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model demonstrates superior results, as evidenced by 
RMSEP values of 0.077, 0.404, 0.205, 0.156, and 0.093 for 
ERG, PRO, CAF, CAM, and MEC, respectively (Table 2). 
The RRMSEP offered a metric for prediction accuracy 
represented as a proportion of the mean concentration 
of the analyte. The MCR-ALS model revealed favorable 
RRMSEP values of 3.121, 1.936, 2.487, 2.936, and 2.386% 
for ERG, PRO, CAF, CAM, and MEC respectively, as 
shown in (Table  S4). The BCMSEP supplied informa-
tion about the precision and variability of the prediction, 
with all models and components achieving acceptably 
low values, suggesting high precision in the predictions 
(Table  S4). To evaluate sensitivity, LOD and LOQ were 
calculated from the net analyte signals, demonstrating 
that the models were sufficiently sensitive for pharma-
ceutical examination. Furthermore, the models exhib-
ited remarkable precision and robustness upon repeated 
testing, with percent relative standard deviation (%RSD) 
values below 2% for both intra-day and inter-day meas-
urements, as presented in (Table S4).

Statistical analysis
There was no discernible difference in accuracy across 
the different models that were suggested, according to 
the One-way analysis of variance (ANOVA) conducted 
on the validation dataset. As shown in (Table  S5), the 
p-values were more than 0.05 The calculated F-values 
were inferior to the critical F-value, indicating that there 
were no statistically substantial variations in the accuracy 
of these models. Furthermore, the chemometric mod-
els proposed in this research exhibited comparable per-
formance to the previously published approach [28] for 
the determination of ERG, PRO, CAF, CAM and MEC 
concentrations, as evidenced by the data presented in 
(Table S5).

Pharmaceuticals assay
The recommended method worked well for testing 
SPASMOMIGRAINE® tablets without interfering with 
the additives. The recommended models were validated 
using the technique of standard addition, and the out-
comes are displayed in (Table 3).

Comparative evaluation of chemometric models
The comparative analysis of chemometric models, 
including PLS, CLS, and MCR-ALS, revealed MCR-ALS 
as the superior model across multiple performance met-
rics. This conclusion was drawn based on key validation 
parameters such as RMSCP, RMSEC, SD, R% values, as 
detailed in (Table S4). While CLS demonstrated adequate 
performance, its reliance on precise knowledge of all cali-
bration sample components limits its practical applica-
bility, especially in complex mixtures. PLS, on the other 

hand, makes the assumption that response variables and 
spectral data have a linear connection offers greater ver-
satility by efficiently determining significant components 
even in the presence of unknown elements. However, 
MCR-ALS exhibited exceptional performance due to its 
unique ability to iteratively learn system behavior from 
dynamic data, achieving a comprehensive mathematical 
and chemical understanding of system complexity. Nota-
bly, MCR-ALS excelled in resolving pure spectra of indi-
vidual components, enabling qualitative identification of 
impurities, so strengthening its resilience to unidentified 
interferences.

To further validate these models, the Elliptical Joint 
Confidence Region (EJCR) test was employed, graphi-
cally assessing their predictive performance [27, 29]. The 
EJCR plot (Fig. S2) provide insightful information about 
how well the three models performed in comparison 
across five distinct medications. MCR-ALS consistently 
demonstrated superior performance, with its confidence 
ellipses being the smallest and closest to the ideal point 
(slope = 1, intercept = 0) for the majority of analytes. This 
indicates the best alignment between true and predicted 
values and the highest accuracy among the models. PLS 
showed variable performance, excelling for some drugs 
(e.g., CAF and MEC) with ellipses comparable to MCR-
ALS, but performing poorly for others (e.g., ERG and 
CAF) with larger, more offset ellipses. CLS generally 
exhibited the largest ellipses and greatest deviations from 
the ideal point, underscoring its limitations in handling 
complex mixtures.

Drug-specific analysis revealed interesting patterns. 
For ERG, MCR-ALS significantly outperformed both PLS 
and CLS, while all models struggled with PRO, suggest-
ing it may be particularly challenging to analyze. CAF 

Table 3  Determination of ERG, PRO, CAF, CAM, and MEC in 
pharmaceutical preparation by the suggested chemometric 
methods and application of standard addition technique

a Average of three determinations

Preparation %Recovery ± %RSDa

CLS PLS MCR-ALS

ERG Application 99.22 ± 0.673 99.68 ± 0.491 99.95 ± 0.261

Standard addition 100.69 ± 0.825 100.86 ± 0.603 100.98 ± 0.381

PRO Application 101.31 ± 0.957 101.17 ± 0.735 101.05 ± 0.513

Standard addition 98.43 ± 0.926 99.31 ± 0.704 99.84 ± 0.482

CAF Application 98.11 ± 0.963 99.13 ± 0.741 99.79 ± 0.519

Standard addition 101.97 ± 0.994 101.63 ± 0.772 101.31 ± 0.550

CAM Application 101.21 ± 0.999 101.85 ± 0.777 101.51 ± 0.555

Standard addition 99.22 ± 0.673 99.68 ± 0.491 99.95 ± 0.261

MEC Application 98.76 ± 0.892 99.48 ± 0.670 99.89 ± 0.448

Standard addition 101.31 ± 0.957 101.17 ± 0.735 101.05 ± 0.513
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and MEC showed closer competition between MCR-
ALS and PLS, with both models performing well. CAM 
displayed the most variability among models, with PLS 
unexpectedly showing the largest ellipse, while MCR-
ALS maintained its superior performance.

The shape and orientation of the ellipses provided 
additional insights. Most ellipses were elongated diago-
nally, indicating a correlation between slope and inter-
cept errors. The tendency for ellipses to have slopes 
slightly greater than 1 and negative intercepts suggests 
a general trend across models to slightly overestimate 
at higher concentrations and underestimate at lower 
concentrations.

In conclusion, this comprehensive comparative study, 
encompassing both traditional validation parameters and 
the EJCR analysis, unequivocally demonstrates the supe-
rior predictive accuracy and consistency of MCR-ALS, 
particularly in complex chemical systems. PLS emerges 
as a viable alternative, especially for specific analytes 
where it performs comparably to MCR-ALS. CLS, while 
functional, shows significant limitations in accuracy and 
precision compared to the other models, especially for 
complex or challenging analytes. These findings under-
score the importance of model selection based on the 
specific characteristics of the analytes being studied and 
highlight MCR-ALS as the most reliable choice for multi-
component analytical scenarios.

Greenness, blueness, and whiteness appraisal
It is essential to evaluate the environmental and eco-
nomic impacts of analytical processes to comprehend 
their sustainability. Sustainability is a multi-sided notion 
that includes elements like environmental friendli-
ness, waste reduction, safety, effectiveness, and afford-
ability [30–32]. A thorough assessment of sustainability 
across all important factors cannot be achieved with a 
single tool [33–35]. For this reason, this study employs 
a thorough multiple-tool approach to facilitate a more 
thorough evaluation from multiple supplementary 
viewpoints.

NEMI tool
The NEMI study conducted a preliminary assessment 
of greenness inadequacies using an optical representa-
tion divided into four quadrants [13]. The four quadrants 
encompass one PBT (persistent, bioaccumulative, and 
toxic) substance, two hazardous materials, three corro-
sives, and four waste products. The green quadrant signi-
fies the following: (1) The reagents used are not classified 
as PBT by the Toxic Release Inventory (EPA-TRI) of the 
Environmental Protection Agency; (2) the compounds 
utilized are deemed non-hazardous and are consequently 
omitted from the TRI list; and (3) the pH of the medium 

varies from 2 to 12. Furthermore, waste generation is 
below 50 g (Fig. S3). NEMI pictograms were created for 
the suggested methodology (Table  4). An early study of 
the pictograms revealed that the suggested technique sat-
isfied all NEMI criteria, as evidenced by the four green 
quadrants.

Complex GAPI tool
While NEMI provides a preliminary assessment of green-
ness, the Complex GAPI tool delivers a more thorough 
semi-quantitative analysis [36]. It surpasses the authen-
tic GAPI measure by incorporating a hexagonal area that 
delineates the phases and stages preceding the analysis 
(Fig. S4). This cutting-edge tool includes every step of 
the analytical process, from getting samples and moving 
them to keeping them safe, storing them, preparing them, 
and finally analyzing them [36]. Furthermore, Complex 
GAPI provides user-friendly software for the creation of 
optical pictograms. In this research, the offered meth-
odology demonstrated significant benefits, as evidenced 
by a minor E-factor of 1 and a prevalence of satisfac-
tory green quadrants, signifying low waste production 
and a favorable influence on sustainability, as revealed 
in (Table 4). Environmental considerations are the main 
focus of Complex GAPI; however, incorporating com-
plementary quantitative measures with complex GAPI 
facilitates a more thorough assessment that includes 
multi-dimensional sustainability metrics such as energy 
preservation, waste reduction, and the utilization of reju-
venated resources.

AGREE tool.
The AGREE metric, encompassing all 12 GAC concepts, 
offers a valuable quantitative approach for assessing 
greenness [37]. This facilitates a comprehensive evalu-
ation based on commonly acknowledged GAC criteria. 
One of AGREE’s main advantages is the flexibility it pro-
vides through the adjustable weighting of these various 
criteria. The user-friendly software converts the 12 inputs 
into a singular score ranging from 0 to 1, presenting it on 
a vibrant pictogram for rapid comprehension. Dark red 
denotes significant shortcomings, whereas dark green 
denotes superior greenness. In this investigation, the 
suggested approach received a superior AGREE score of 
0.75 (Table 4), confirming its exceptional effectiveness in 
furthering sustainability objectives. On the other hand, 
AGREE only considers environmental factors. Integrat-
ing AGREE with tools that evaluate other important fac-
tors like affordability, practicality, safety, and analytical 
ability is helpful in enabling a comprehensive sustainabil-
ity evaluation.
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Table 4  Comparative study of the proposed and reported methods

The proposed method The reported method (Elbarbry et al., 2007)

NEMI tool

ComplexGAPI tool

AGREE tool

Carbon footprint (kg CO2 eq 
/sample)

0.002

Proposed method

0.
09
7

Reported method
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Carbon footprint analysis
Carbon footprint analysis, as opposed to other greenness 
evaluations, allows for a quantitative comparison of the 
ecological effects of analytical methods with respect to 
greenhouse gas emissions, quantified in kilograms of CO2 
equivalent [38]. While tools such as AGREE, Complex 
GAPI, and NEMI provide valuable insights into method 
greenness, they lack the capability to quantify emissions 
directly. Carbon footprint analysis, however, presents a 
comprehensive measure that incorporates crucial fac-
tors often overlooked in other assessments. These fac-
tors include power consumption, reagent transportation, 
and waste generation – all significant contributors to the 
overall environmental impact of analytical procedures.

To conduct our carbon footprint analysis, we employed 
a standardized equation [39]:

The suggested approach had a substantially minimal 
carbon footprint, merely 0.002-kg CO2 equivalent for 
each sample, as revealed in (Table 4). Our method leaves 

Carbon footprint (kg CO2 eq) =
∑

Instrument Power(kW ).Analysis time(h).Emission factor (kgCO2/kWh)

less of a carbon footprint because it uses less electricity 
because the analysis times are shorter and there is no 
derivatization step. Moreover, using ethanol instead of 
dangerous solvents like chloroform and methylene chlo-
ride greatly reduced emissions related to transportation, 
proving that it is good for the environment.

BAGI tool
BAGI represents a paradigm shift in analytical method 
evaluation, moving beyond the traditional focus on envi-
ronmental "greenness" to quantify a method’s practical 
applicability or "blueness" [40]. This innovative metric 
provides a comprehensive assessment of an analytical 
procedure’s real-world viability by examining ten critical 
operational parameters. These parameters encompass the 
nature of the analysis, analyte multiplicity, instrumental 

requirements, sample throughput efficiency, preparation 
complexity, hourly analysis capacity, resource demands, 

Table 4  (continued)

The proposed method The reported method (Elbarbry et al., 2007)

BAGI tool

RGB12 tool
R1: Scope of 

applica�on 90.0 G1: Toxicity 
of reagents 100.0 B1: Cost-

efficiency 90.0

R2: LOD and 
LOQ 85.0

G2: Amount 
of reagents 

and waste
80.0 B2: Time-

efficiency 90.0

R3: Precision 90.0
G3: Energy 
and other 

media
90.0 B3: 

Requirements 92.5

R4: Accuracy 95.0 G4: Direct 
impacts 100.0 B4: Opera�onal 

simplicity 75.0

90.0 92.5 86.9
89.8

R1: Scope of 
applica�on 50.0 G1: Toxicity 

of reagents 60.0 B1: Cost-
efficiency 90.0

R2: LOD and 
LOQ 60.0

G2: Amount 
of reagents 

and waste
50.0 B2: Time-

efficiency 60.0

R3: Precision 80.0
G3: Energy 
and other 

media
50.0 B3: 

Requirements 75.0

R4: Accuracy 85.0 G4: Direct 
impacts 86.7 B4: Opera�onal 

simplicity 66.7

68.8 61.7 72.9
67.8
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pre-concentration necessities, automation extent, and 
sample volume considerations. The BAGI methodol-
ogy assigns each factor a score on a scale of 1 to 10, with 
higher scores indicating superior performance. By cal-
culating the geometric mean of these individual scores, 
the BAGI generates a single, holistic value that reflects 
the method’s overall suitability for routine implementa-
tion. This approach yields valuable insights into a meth-
od’s relevance, functionality, and fitness-for-purpose in 
practical settings, offering a nuanced perspective that 
complements environmental considerations. Conse-
quently, analytical procedures boasting higher BAGI 
scores are better positioned to meet the multifaceted 
demands of real-world applications, balancing ecological 
responsibility with operational efficacy. In this study, our 
method attained an impressive BAGI score of 90, signify-
ing exceptional applicability. According to (Table 4), the 
BAGI assessment approves that our method has a great 
deal of benefits with respect to hazard reduction, time 
and money savings, and general usability. BAGI does not, 
however, offer a comprehensive, all-encompassing quan-
tification of sustainability, even though it assesses impor-
tant real-world use. To get a more all-encompassing 
evaluation that takes environmental friendliness, analyti-
cal quality, and practicality into account, we also used the 
RGB12 tool.

RGB12 tool
In 2021, Paweł Nowak and his team publicly introduced 
the RGB12 algorithm [41]. It is an easy-to-use quan-
titative assessment instrument for evaluating white-
ness. This instrument evaluates methodologies based 
on the 12 WAC issues and examines their sustainabil-
ity in relation to whiteness appraisal [42]. The RGB12 
algorithm consists of twelve unique algorithms, catego-
rized into three groups: "red," "green," and "blue," with 
each category containing four methods. The green sub-
group (G1–G4) examines critical GAC factors includ-
ing toxicity, energy conservation, reagent production, 
and waste and effects on animals, humans, and genetic 
alterations. The red group (R1–R4) focuses on valida-
tion criteria such as accuracy, limit of quantification 
(LOQ), precision, application scope, and limit of detec-
tion (LOD). The blue subgroup (B1–B4) relates to prac-
tical and economic requirements, cost-effectiveness, 
and time efficiency. The RGB12 algorithm adheres to 
WAC tenets by consolidating the scores across all three 
color domains to calculate the final "whiteness" number. 
The approach attains a notable whiteness score of 89.8, 
as indicated in (Table  4). This proves that the method 
offers several usefulness in terms of being eco-friendly, 
sustainable, economically viable, practically applica-
ble, and analytically efficient. Combining RGB12 with 

other metrics allowed for a thorough, reliable assess-
ment of sustainability and got around the drawbacks of 
using just one method. An objective, thorough analyti-
cal approach to sustainability assessment is best dem-
onstrated by this systems-oriented mindset that makes 
use of numerous complementary tools.

Conclusion
This innovative study effectively developed and validated 
three chemometric models (CLS, PLS, and MCR-ALS) 
for the concurrent environmentally friendly determi-
nation of ERG, PRO, CAF, CAM and MEC using UV–
visible spectroscopy. The deliberate use of the KSC 
guaranteed strong validation across various multivariate 
concentration levels. The rigorous evaluation confirmed 
the precision, accuracy, and sensitivity of these models, 
with MCR-ALS emerging as the top performer by quali-
tatively resolving pure component spectra in addition to 
quantification. The embrace of Principles of green and 
white analytical chemistry, coupled with the compre-
hensive greenness, blueness, and whiteness assessment 
using six cutting-edge tools, positions this method as a 
sustainable, practical, and analytically powerful alterna-
tive to conventional chromatographic techniques. The 
eco-friendly solvent selection, reduced waste, low car-
bon footprint, and high analytical greenness reinforce its 
potential for widespread implementation in cost-effective 
routine quality control. This novel methodology ena-
bles the on-site measurement of ERG, PRO, CAF, CAM, 
and MEC drugs using affordable UV instrumentation, 
enhancing pharmaceutical quality assurance in resource-
limited settings.
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