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Abstract 

The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni 
(II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic 
susceptibility, molar conductivity, FTIR, and UV–Vis spectroscopy, the computational path helped with further 
structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic 
solvents. DFT computational analysis was performed, and quantum reactivity parameters of the octahedral optimized 
complexes were calculated to describe the reactivity via the stability states of the synthesized complexes. FMOs map 
was generated to confirm similar findings and MEP analysis was applied to elaborate the important electrophilic 
and nucleophilic sites on the studied surfaces. Also, other important topological analyses such as electron localization 
function and reduced density gradient, to establish the favorable noncovalent interactions, were studied. In silico 
molecular docking approach was studied against the gram-positive bacteria Bacillus cereus to predict the potent 
inhibition behavior of the studied complexes. The findings summarized the inhibition prediction of the most 
interactive [NiL2Cl2], then [FeL2Cl2] complexes as confirmed by the binding energy values (− 7.1 kacl/mol and − 6.4 
kacl/mol, respectively). Another In silico results, with gram-positive bacteria (S. aureus), estimated similar results 
of the experimental finding, where [MnL2Cl2] (− 9.2 kcal/mol) is the more effective predicted antibacterial inhibitor. 
Fluorescence microscopy was used to examine the inhibition of bacterial biofilm, and the DPPH assay was used 
to measure antioxidant activity, followed by an understanding of the behavior of the current complexes toward free 
radicals’ removal. The findings observed less aggregated bacterial strains covered with the studied complexes leading 
to less dense biofilm covering.
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Introduction
Coordination chemistry always attracted attention for its 
increasing importance, particularly in the design of stor-
age facilities; slow-release or extended-release drugs in 
dietetics and the study of metabolism employ metal ions 
to accelerate drug effects. Over the years, a lot of research-
ers have dealt with the interaction of metal ions with DNA 
and its components [1]. Coordination and organometal-
lic chemistry have extensively utilized transition metal 
complexes with soft or hard donor groups. Thiosemicar-
bazones are a class of compounds obtained by combining 
thiosemicarbazide with appropriate aldehydes or ketones. 
Thiosemicarbazones, which can bind to metals through 
sulfur and the hydrazine nitrogen atoms, serve as biden-
tate ligands in the majority of complexes; however, in 
certain instances, they serve as unidentifiable ligands and 
bond through only sulfur atoms [2–4]. Thiosemicarba-
zone derivatives are significant because of their numerous 
biological and therapeutic properties [5, 6]. Thiosemicar-
bazone derivatives are used in drug development to treat 
central nervous system disorders, bacterial infections, and 
analgesic and antihistamines [7]. Thiosemicarbazones, as 
potent intermediates in synthesizing pharmaceutical and 
bioactive compounds, are extensively employed in thera-
peutic chemistry [8]. Previous four years and assess the 
issues raised by the use of several sustainable solvents to 
extract a variety of naturally occurring bioactive chemi-
cals. Even though some preferred solvents are regarded 
as environmentally friendly, we show how those solvents 
affect the environment and offer mitigation techniques for 
any potentially harmful impacts. Hashemi et al. [9] high-
lighted the basic physicochemical characteristics of the 
sustainable solvents that are typically employed to extract 
bioactive compounds, as well as their benefits and draw-
backs, environmental issues related to those solvents, 
and potential future developments in this area. Regarding 
the use of particular green solvents in the extraction and 
purification of bioactive compounds, a few outstanding 
reviews have already been published [10–12]. DES and 
supercritical and subcritical solvents, for instance, are 
applied in the extraction of bioactive compounds from 
plant materials as reported by Babalo et al. [13]. Further-
more, thiosemicarbazones have found their way into vir-
tually every area of chemistry; on a commercial level, they 
are employed in the textile, plastic, photography, and dye 
sectors [13]. Metal complexes interact with DNA to create 
novel reagents for the biological and medical sciences and 
have been the subject of extensive research for a consider-
able period [14]. Hydrolytic or oxidative pathways can be 
used to cleave DNA. The phosphodiester bond is cleaved 
during the hydrolytic process, resulting in the forma-
tion of fragments that could be discarded by an enzyme 
[15]. The Schiff base and transition metal have not been 

worked on, according to a search through the literature. 
Thiosemicarbazone compounds have shown a wide spec-
trum of biological activity in the fields of antimicrobial 
[16], antitumor [17], sodium channel blocker [18], anti-
cancer [19], antitubercular, and corrosion inhibitor [20]. 
Considering the diverse biomedical uses of this class of 
compounds, we present the synthesis and investigation of 
Fe (II), Mn(II), and Ni(II) complexes of thiosemicarbazide 
derivatives. The metal synthesized octahedral complexes 
based on thiosemicarbazone were predicted to have a 
potent therapeutic strategy towards pharmaceutical field. 
Several candidates were studied with four and five coordi-
nate structures [21] and others showed a broad variety of 
coordination numbers and geometries, different oxidized 
and reduced states, and the intrinsic ligand characteristics 
provide chemists studying pharmaceuticals with an abun-
dance of drug structures [22].

The aim of this study is to synthesize thiosemicarbazone 
(TSC)-based metal complexes as sketched in Scheme  1. 
Using IR and UV spectra, the molecular structures of 
TSC-M complexes were ascertained (MS). As the syn-
thesis and characterization of these complexes were 
achieved previously in the literature [21, 23], we directed 
to investigate their electronic structures computationally 
in more advance. Important quantum parameters for the 
optimized structures were calculated based on FMOs. In 
this work, topological analysis was considered to give a 
full description of the coordinate nature between donor 
and acceptor terminals, such as MEP, ELF, and RDG/
NCI indices. DPPH assay was used to determine the 
antioxidant activity to realize the behavior of the current 
complexes toward free radicals’ removal. The best ligand–
protein interactive score was determined by protein mac-
romolecular analysis using the tested complexes.

Materials and methods
This work employed reagent-grade chemicals from 
the Fluka company and Sigma-Aldrich, including 
MnCl2.4H2O (98% Fluka), FeCl2.4H2O (≥ 99.0% Fluka), 
and NiCl2.6H2O (≥ 98% Fluka), Thiosimcarbazide, 
4-Hydroxybenzaldehyde (98% Sigma-Aldrich), and 
absolute ethanol (≥ 99.8% Fluka). On a Shimadzu 3800- 
FTIR spectrophotometer, CsI discs, Fourier Transfer 
Infrared Rays (FTIR) spectra were recorded in the range 
(4000–400) cm−1. Electronic spectra of products were 
recorded in the range of 200–1100 nm using a Shimadzu 
UV-1650 spectrophotometer, in freshly prepared 
10–3  M ethanolic solutions. A Shimadzu A680G was 
used to measure the metals in the complexes-atomic 
absorption spectrophotometer. A capacitor analyzer was 
used to measure the conductivity of the complexes at 
25  °C in a freshly prepared 10–3  M solution in Ethanol. 
The balanced magnetic susceptibility of Bruke magnet 
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B.M.6, England, was used to collect magnetic properties. 
The melting points of the prepared compounds were 
determined using the Gallenkamp M.F.B-600 F Melting 
Point Apparatus.

Synthesis of (E)‑2‑(4‑hydroxybenzylidene)
hydrazine‑1‑carbothioamide (Schiff base‑ TSC)
20 mL of ethanolic solution of 4- Hydroxybenzaldehyde 
(0.122  g, 1  mol) was refluxed with 20  mL of 
thiosemicarbazide (0.091  g, 1  mol), and a few drops of 
glacial Acetic acid were added. The reflux was applied 

for 6  h, then allowed to cool at room temperature. The 
produced black precipitate was filtered and recrystallized 
from ethanol to give black needles [24].

Synthesis of dichloro‑bis(2‑(4‑hydroxybenzylidene)
hydrazine‑1‑carbothioamido) metal(II) complexes:
20  mL Ethanolic solution of ligand (L) (0.400  g, 2  mol) 
was added to an aqueous solution of each of the metal 
salts (1 mol) (0.198 g MnCl2.4H2O, 0.199 g FeCl2.4H2O, 
and 0.238  g NiCl2.6H2O). The reaction mixture was 
continuously stirred for 2  h. The required product was 
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Scheme 1  Synthesis of the Schiff base (TSC) and its complexes
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shortly precipitated at room temperature, filtered off, 
and washed with 1:1 (ethanol: water), recrystallized 
from ethanol, and dried at 70  °C. Scheme  1 displays 
the synthesis of the Schiff base ligand (L) and its metal 
complexes.

Computational details:
To suggest a potential 3D structure for the studied Fe, 
Ni, and Mn complexes, density functional theory (DFT) 
geometrical optimization, that performed for theoretical 
structure investigation, and calculations were performed 
in the gas phase [25–27]. The exchange–correlation 
functional B3LYP with GENECP basis set was applied 
to involve 6-31g for the atoms C, H, N, O, S, and Cl, and 
LANL2DZ, the computational basis set that treat the 
core potential of transition elements, was utilized for 
the metal atoms Fe, Ni, and Mn. The computations were 
performed using the Gaussian 09 W and Gaussian View 
software [28]. FMOs were described based on chk file 
geometrical generation. The quantum chemical reactivity 
parameters were estimated for all studied complexes 
after geometrical optimization. The following Eqs. [29, 
30] were used to determine these descriptors using the 
values of HOMO, LUMO, the ionization potential (I), 
and the electron affinity (A):

Molecular docking methodology
For very effective outcomes, the docking process 
primarily follows a critical path [31–33]. Consequently, 
the Autodock Vina [34] software (version 4.2) was used 
to simulate the docking of the studied complexes with 
control comparison. Moreover, analysis and visualization 
of docking data were performed using Discovery Studio 
software (https://​www.​3ds.​com/​produ​cts-​servi​ces/​
biovia/). Transferase enzyme of gram-positive Bacillus 

(1)Energy gap (EGAP) = ELUMO − EHOMO

(2)Ionization potential (I) = − EHOMO

(3)Electron affinity (A) = − ELUMO

(4)Chemical hardness (η) = (I− A)/2

(5)Chemical potential (µ) = − (I+ A)/2

(6)Softness (σ ) = 1/ η

(7)
Electronegativity (χ) = −(EHOMO + ELUMO)/2

(8)Electrophilicity (ω) = µ2/2η

cereus bacteria (ID: 4JH9) [35] was selected, based on the 
biological potent evidence of the inhibition effect. The 
protein of interest and was obtained from the Protein 
Data Bank website (https://​www.​rcsb.​org/​struc​ture/​
4JH9). The optimized complexes were docked under 
certain conditions starting with preparing the target 
protein by removing water molecules and any undesirable 
atoms. The protein charge was adjusted after adding 
polar H-atoms, and the complexes were applied as pdbqt 
extension files. The expected active spots were identified, 
and the grid box dimensions were created [36, 37]. With 
an energy range of 4, the grid box size was approximated 
based on the drug-like control inside the protein pocket, 
with dimensions of 40 × 40 × 40 Å, 0.3 Å spacing, grid 
centers x, y, and z of -2.343, 2.477, and 5.872, respectively. 
Lamarckian-Genetic Algorithm was thought to be the 
binding affinity mode [38–40].

Bacteria pathogenic identification and diagnosis
Isolates of (B. cereus, and K. pneumoniae) were supplied 
from the laboratory of microbiology. All microbial 
isolates were identified at the species level by the 
VITEK-2 compact system. This can be processed with a 
(GP) card for gram-positive bacteria identification, and a 
(GN) card for gram-negative bacteria identification.

Estimation of minimum inhibitory concentrations (MIC)
The Minimum Inhibitory Concentration (MIC) of 
FeL2Cl2, NiL2Cl2, and MnL2Cl2 against B. cereus and 
K.pneumoniae was determined using a microdilution 
assay. The procedure involved the following steps: 
Stock solutions of FeL2Cl2, NiL2Cl2, and MnL2Cl2 were 
prepared at various concentrations ranging from 1024 
to 1 µgmL-1. Test microliter plates were set up with 
a twofold dilution series for each treatment group, 
including FeL2Cl2, NiL2Cl2, and MnL2Cl2. Each well of 
the plates was inoculated with a standardized suspension 
of B. cereus or/and K.pneumoniae at a concentration 
appropriate for the assay. The plates were incubated 
at 37  °C for 24  h to allow for bacterial growth and 
interaction with the treatments. After incubation, the 
MIC was determined as the lowest concentration of the 
agent that inhibited visible bacterial growth.

Antimicrobial assay
The antibacterial activity was examined using the Agar 
well diffusion method [41] according to the manufacturer’s 
instruction. Mueller Hinton agar was prepared and used, 
0.1 ml of overnight strain culture (adjusted to 0.5 McFar-
land turbidity), streaked entirely on the Mueller Hinton 
agar using a sterile swab stick. Four wells were bored in 
the culture medium using a sterile 6 mm diameter cork 
borer. 0.1 ml of each concentration (25,50,100) µg/ml of 

https://www.3ds.com/products-services/biovia/
https://www.3ds.com/products-services/biovia/
https://www.rcsb.org/structure/4JH9
https://www.rcsb.org/structure/4JH9
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metal complexes: ([FeL2Cl2], [NiL2Cl2], [MnL2Cl2] were 
added to different wells using a sterile micropipette. The 
negative control had D.W. The observed inhibition zones 
were measured and recorded in millimeters. This was 
done in triplicates to study biofilms formed on culture 
dishes of Lysogenia broth medium (HiMedia, India). Bac-
terial strains were left unstained as control or treated with 
([FeL2Cl2], [NiL2Cl2], and [MnL2Cl2]) at a concentration 
of 100 μg/mL for 24 h and stained using the Film Tracer 
LIVE/ DEAD Biofilm Viability Kit. The results were exam-
ined using a fluorescent microscope [42].

Antioxidant activity by DPPH
Using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-
hydrate) radical, scavenging activities of the products 
evolved, based on the methodology described in the pre-
vious work [43]. 10  µL of each component ([FeL2Cl2], 
[NiL2Cl2], [MnL2Cl2]) of concentrations; 25, 50, and 100 
µg/mL 490 µL was added to the DPPH in absolute etha-
nol. The samples were incubated for 30 min at 25 °C, and 
the absorbances were measured at 517 nm. A DPPH solu-
tion only  (500 µL) was prepared as a blank solution. The 
measurements were carried out three times. According to 
Eq. (9), the antioxidant activity was determined [44].

Statistical analysis
The data of the current study were statically analyzed by 
an unpaired t-test using GraphPad Prism (version 7) (8). 
The values were represented as the mean ± SD [45].

Results and discussion
The reactions of Mn, Fe, and Ni(II) chloride salts with 
synthesized TSC-Schiff base (L) in 1:2 molar ratios were 
followed, and Physiochemical characterizations of the 

(9)

Scavenging activity % =
ODcontrol

− ODsample

ODcontrol
x100

products were investigated. The products are found to be 
air-stable, at room temperature. The TSC- Schiff base (L) 
is soluble in common organic solvents, such as ethanol, 
methanol, and chloroform, while the metal complexes are 
relatively well soluble in Ethanol. The synthesized ligand 
and its complexes were characterized by elemental analy-
sis, UV spectra, FTIR, and conductivity measurements. 
The physical properties and data of the ligand (HL) with 
its metal complexes are given in Table 1. The small val-
ues of conductivity measurements indicated that metal 
complexes are non-ionized, while the metal analysis sug-
gested the mole ratio of metal complexes to be 1 M(II): 
2L: 2Cl.

Infrared spectra
The type of functional group that is affixed to the metal 
atom can be inferred from the IR spectra, which offer 
important insights. The FTIR spectra of the ligand TSC 
(Fig.  1) showed strong bands in the 3265, 3157  cm–1 
assignable attributed to the − NH2 group and the strong 
bands in the 3421  cm−1 assignable to the − NH group. 
The appearance of these peaks in all the spectra of the 
complexes indicates that the –NH2 and − NH groups are 
not involved in complexation [46–48].

A strong absorption band at 1583 cm−1 due to ν (C = N) 
present in the free ligand has red shifted by 15–25 cm−1 
in all complexes, indicating the involvement of (C = N) 
azo methine group in coordination [49], The strong 
bands observed at 1278 cm−1 & 831 cm–1 in the spectrum 
was due to the ν(C = S) and δ(C = S) [50]. The band near 
(1165) cm−1 in the free Schiff base ligand may be assigned 
to υ (NH–C = S), which showed a red shift upon compl-
exation indicating the sulfur contribution in coordination 
with the metal ion [51]. Accordingly, the ligand acts as a 
bidentate chelating agent, bonded to the metal ion via the 
nitrogen (–C = N) atoms and the Sulfur (–C = S) atoms 
of the Schiff base ligand for the Ni(II), Mn(II), and Fe(II) 
complexes. The far IR spectra of the metal chelate show 

Table 1  Physical characteristics and analytical data for (TSC) and its metal complexes

Compound Colour Melting Point
(oC)

Yield
%

Conductivity (μs.
cm−1)

Elemental analysis
Calc. (found)

C H N S M

Ligand (L) Black 185–187 80 – 49.22
(49.00)

4.65
(4.52)

21.52
(22.02)

16.42
(16.02)

–

[FeL2Cl2] Brown 197–199 80 49 37.16
(38.02)

3.51
(3.82)

16.25
(16.62)

12.40
(12.66)

10.80
(10.49)

[MnL2Cl2] Light pink 204–206 76 54 37.22
(37.50)

3.51
(3.42)

16.28
(16.80)

12.42
(12.86)

10.64
(10.21)

[NiL2Cl2] Dark Green 200–202 77 44 36.95
(36.81)

3.49
(3.31)

16.16
(15.99)

12.33
(12.01)

11.29
(11.22)
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some new bands at 543 ± 10 cm−1 and 501 ± 10 cm−1 have 
been assigned to ν (M–N) and ν (M–S) modes respec-
tively [52, 53], Figs. 2, 3, 4. Table 2 displays the FTIR data 
exported for both TSC and its metal complexes. How-
ever, the stretching vibration of C = N was shown to be 
equal to 1623, 1605, and 1624  cm−1 in the Fe, Mn, and 
Ni complexes respectively. The ν(C=S) were found to be 
792 and 678 cm−1 for the Fe complex, 753 and 690 cm−1 
for the Mn complex, 758 and 688  cm−1 for the Ni com-
plex. These observed shifts can be due to changes in 
bond strength and coordination environment caused 
by the coordination of the mentioned functional groups 
with metal ions. The band near (1165) cm−1 in the free 
Schiff base ligand assigned to the stretching vibration 
of (NH–C = S) showed a shift to lower wave numbers in 
the corresponding complexes (1050  cm−1 for Fe com-
plex, 1059  cm−1 for Mn complex and 1050  cm−1 for Ni 
complex) confirming sulfur contribution in coordinating 
to the metal ion. Additionally, the phenolic OH group 
appeared at 2367  cm−1 in ligand seems not very much 
affected upon metal complexation showing little shift 
that can be attributed to total environment.

Electronic spectra
The UV–Vis electronic spectra of thiosemicarbazide 
Schiff base metal complexes reveal important information 

about their electronic structure, coordination geometry, 
and metal–ligand interactions [54–59].

The electronic spectra of the ligands and the Ni (II), 
Mn (II), and Fe (II) complexes were recorded in Ethanol 
at room temperature (Fig. 5). The UV spectral data of free 
ligand L shows a strong band at 322  nm which may be 
attributed to the benzene n–π* transition and another 
at 215, 240, and 311  nm due to π–π* transition of the 
nonbonding electrons azomethine nitrogen in the Schiff 
base. The UV spectra of the studied ligand complexes 
show a significant variation in spectral lines at a range 
from 200 nm to 400 nm.

Magnetic properties
The magnetic moment μeff for the complexes of Fe2+ 
(d6), and Mn2+ (d5) was found to be 5.47 B.M and 6.40 
B.M. respectively, which were within the expected 
spin-only values. The higher value of μeff of the Ni2+ 
(d8) complex 3.21 B. M can be attributed to the orbital 
contribution. Finally, the values of the magnetic moment 
of the complexes confirm the octahedral geometry 
of the prepared complexes [60, 61]. According to the 
magnetic moment values, all the prepared complexes are 
paramagnetic, and their values do not deviate from the 
theoretically calculated ones, they also agree with those 
reported for typical transition metal complexes. These 
results are found in Table 3.

Fig. 1  FT-IR spectrum of Schiff base, L
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Fig. 2  FT-IR spectrum of compound (FeL)

Fig. 3  FT-IR spectrum of compound (NiL)
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Geometrical achievement
The designed complexes under investigation have opti-
mal geometries displayed in Fig. 6 the electronic system 
mainly depends on the relationship between the equi-
librium geometries of the studied complexes and the 
electronic structure of the transition metal atoms. Geo-
metrically optimized structures described the octahedral 
geometry of all metals coordinated with two bidentate 
ligand molecules from its S and N binding sites, and two 
chloride atoms leading to balance the charge of the metal 
ion. Considering the bond length variation between 
the ligand atoms before and after complexation (Sup-
plementary Figs.  1–4) can detect this change. Cartesian 

coordinates of the designed complexes are displayed in 
Supplementary Tables 1–4.

Quantum chemical reactivity and FMOs analysis
The highest occupied and lowest unoccupied molecu-
lar orbitals (HOMO and LUMO) were generated for all 
complexes describing different electronic contributions 
during electronic transitions. Differences in FMO ener-
gies were mentioned as the energy gap values that indi-
cate the stability level of the studied complexes. From 
Fig. 7, it is obvious that Fe(II) complex is the most stable 
as its energy gap is estimated at 1.252 eV and the LUMO 
energy has a slightly high estimated value (−  4.952 eV). 

Fig. 4  FT-IR spectrum of compound (MnL)

Table 2  The most diagnostic FTIR peaks for the ligand, L and its complexes (cm−1)

Compounds υNH2 υNH υ (NC=S) ν(C=N) δ (C=S-) ν(M-S) ν(M–N)

L 3265
3157

3421 1165 1583 831 – –

[FeL2Cl2] 3250
3150

3388 1050 1623 792
678

307 420

[MnL2Cl2] 3248
3153

3384 1059 1605 753
690

311 435

[NiL2Cl2] 3245
3156

3382 1050 1624 758
688

305 435
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On the other hand, Ni(II) complex was considered the 
most reactive system during electronic transitions (1.011 
eV), and its transition analysis is closer to Mn(II) complex 
(1.07 eV). Using the DFT method with B3LYP/GENECP 
level, some reactivity descriptors were calculated to 
understand their aspects in therapeutic and toxicol-
ogy. The most important descriptors included the global 
electrophilicity index (ω), hardness (η), softness (σ), elec-
tronegativity (χ), chemical potential (μ), and softness 
(σ) are listed in Table  4. Because there are differences 
in electron mobility between LUMO and HOMO, the 
energy gap (∆E) is essential for ranking reactivity [62]. A 
molecule with a smaller ∆E is more reactive. As a result, 
the order of reactivity should be [Ni(TSC)2Cl2] > [Mn
(TSC)2Cl2] > [Fe(TSC)2Cl2]. The reactivity and electron 
density fluctuation rate of a molecule can be used to 
measure how “soft” it is [63]. This shows that charges can 
be transferred between the relevant compounds quite 
simply. The hardness and softness of molecules should 
have opposite strengths in order to properly arrange 
reactivity [64]. This is because a molecule that is more 
reactive would be softer and less hard than a molecule 
that is less reactive. As in [Ni(TSC)2Cl2] that is more 
reactive due to its higher softness (1.976).

The resistance of molecules to electron density defor-
mation under minor perturbations during chemical 

reactions can be determined by analyzing their hard-
ness and softness indices. Hard molecules have a wide 
HOMO–LUMO gap and are not very polarizable, 
whereas soft molecules have a short HOMO–LUMO 
gap, are highly polarizable, and are more reactive [65]. 
An important indicator of global chemical reactivity is 
the global electrophilicity index, which quantifies how 
energy stabilizes when a molecule receives an additional 
electronic charge from an outside source [66]. According 
to DFT calculations, there is a strong interaction between 
the studied ligand and Fe(II), Mn(II), and Ni(II) ions 
through the nitrogen and sulfur atoms of the designed 
ligand. Furthermore, the determined energy gap between 
FMOs demonstrated that the produced complexes were 
sufficiently stable to be synthesized and employed suc-
cessfully for pharmacological application. Table  4 illus-
trates that all of the complexes’ chemical potential values 
are negative, signifying their stability and resistance to 
dissociating back into their constituent materials follow-
ing production. Furthermore, the data demonstrated that 
the hardness (η) values of the proposed complexes were 
small with the greater softness (σ) values, indicating that 
the studied complexes possess a small energy gap leading 
to reactive scale prediction.

Topological interpretation
Molecular electrostatic potential (MEP)
The distribution of charges, the locations of electrophilic 
and nucleophilic assaults inside the molecule, and 
molecular reactivity are all clarified by molecular 
electrostatic potential [67]. The visualized colored map 
can be generated utilizing a specific force acting on 
specific species in the molecule generating a predicted 
potential depending on the electron cloud and nuclei 
at a certain point. MEP is expressed by the following 
equation:

In this work, the MEP 3D colored map of M(II) complexes 
was exported in Fig. 8 significant increase in potential pass-
through red color scale (more negative value) to blue color 
scale (more positive value). Red denotes the largest negative 
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Fig. 5  Electronic Spectra of compounds (L, NiL2Cl2, FeL2Cl2, 
and MnL2Cl2)

Table 3  The magnetic properties of the complexes at 25 °C

Complexes No. of Elec. No. of unpaired 
electron

Electronic 
configuration

Term symbol μeff

Calc. Found

[MnL2Cl2] d5 5 T2g3 Eg2 6S 5.92 6.40

[FeL2Cl2] d6 4 T2g4Eg2 5D 4.90 5.47

[NiL2Cl2] d8 2 T2g6Eg2 3F 3.87 3.21



Page 10 of 26El‑Sayed et al. BMC Chemistry  (2025) 19:24

Fig. 6  Geometrical optimized complexes. a Schiff base (TSC), b Fe(II), c Mn(II) and d Ni(II), using DFT/B3LYP/GENECP level (atomic color scale, 
S, yellow; N, blue; O, red; C, grey; H, white)
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electrostatic potential region, whereas blue denotes a posi-
tive electrostatic potential [68]. It was observed that the 
electron density around S atom of the ligand is varied after 
complexation with the studied M(II) ions. That predicted 
more electron transfer to the metal ion through the donor 
S atom. In more detail, it was observed from the mapped 
results that the highly electronic-rich sites present in the 
aromatic rings of the ligands for both Fe(II) and Mn(II) 
complexes. However this contribution significantly less 
appeared in Ni(II) complex. In all complexes, the electronic 
poor sites referred to with the blue color scale delocalized 
on the NH2 group of the ligand leading to think about NH2 
group sharing in other reactions such as intramolecular 
hydrogen sulfur atom of the ligand.

Electron localization function (ELF)
The identification and prediction of electron localiza-
tion zones on the surface of the coordinated metal com-
plexes can be facilitated by ELF. For the studied M-TSC 

complexes, the 2D shaded surface map is displayed in 
Fig. 9. The plane is characterized by three atoms involving 
the core metal and coordinated two donor atoms of TSC 
ligand. The map illustrates the difference in electron locali-
zation density surrounding this three-atom plane, denoted 
by a distinctive color code [69]. In the case of Fe(II) com-
plex, the three planes described the nature of the coordi-
nate bond based on the strength of the donor site to share 
its electrons, as in the case of Cl1–M–S1 plane with sig-
nificant delocalized electrons distributed around the Fe-
coordinated sites, unlike N2, N1 and S2 atoms in the other 
described planes. On the other hand, Mn planes were best 
described for strong interactions through N1–Mn–S2 and 
N2–Mn–Cl2 planes, while Mn with Cl1 and S1 exhibited 
low electronic area around the metal. In the case of Ni-
complex, the same finding is present as in Fe-complex, 
however, the planes in the case of Ni-complex exported 
less electronic localization around N1 and N2 donor sites 
of TSC.

Fig. 7  Energy levels of FMOs for the studied complexes, a Schiff base (TSC), b Fe(II), c Mn(II), d Ni(II)

Table 4  Quantum chemical reactivity parameters of the studied complexes

complex EHOMO ELUMO EGAP I A μ χ ω η σ

Schiff base (TSC) − 5.306 − 1.415 3.891 5.306 1.415 3.360- 3.360 2.902 1.945 0.514

[Fe(TSC)2Cl2] − 6.204 − 4.952 1.252 6.204 4.952 − 5.578 5.578 24.851 0.626 1.597

[Mn(TSC)2Cl2] − 6.195 − 5.125 1.07 6.195 5.125 − 5.66 5.66 29.94 0.535 1.869

[Ni(TSC)2Cl2] − 5.990 − 4.979 1.011 5.990 4.979 − 5.485 5.485 29.728 0.506 1.976
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Reduced density gradient approximation
The QTAIM study is unable to identify any of the 
expected weak non-covalent interactions, especially 
intramolecular hydrogen bonds [70, 71]. After evaluating 
the isosurfaces of the reduced density gradient (r), plots 
were made for the studied metal complexes. Figure  10 
shows a complete map to discuss the ability of molecu-
lar linkage with some favorable non-covalent interac-
tions. The generated plots show the reduced density 
gradient (RDG) versus the electron density multiplied by 
the sign of the second Hessian and gradient isosurfaces, 
illustrating intramolecular interactions for the current 
complexes. The observed results indicate the presence 
of some variety in the RDG plot for each complex. This 
is attributed to the geometrical structure of the M-L 
complex and is mainly a consequence of coordination 
environment of the metal involved based on its bond-
ing strength. The presence of the L-aromatic rings in the 
structure may export some information about the spike 

distribution related to each interaction type. For some 
details, the color scale of RDG plot insight an interaction 
type, whereas the electronic density integrated param-
eter (sign λ2)ρ reaches to value < 0. The favorable inter-
actions (H-bond in blue spike and vdW in green spike) 
are mostly predominant. On the other hand, changing 
the (sign λ2)ρ parameter to be > 0 leads to the generation 
of unfavorable (steric with red spike) interaction. Higher 
steric hindrance appears in the region of (sign λ2)ρ < 0.03 
in all proposed metal complexes, resulting from the 
restriction exported in the membered phenyl ring and 
also some crowd in the M-L coordination area. However, 
this unfavorable interaction can be compensated with the 
electrostatic attraction forces (vdW).

Protein‑binding affinity
The docking approach primarily follows a vital route for 
incredibly efficient outcomes [72–74]. Possible Inter-
action between the synthesized complexes and the 

Fig. 8  3D-MEP surface of the studied complexes, a Schiff base (TSC), b [Fe(TSC)2(Cl)2], c [Mn(TSC)2(Cl)2], and d [Ni(TSC)2(Cl)2], (red and yellow color 
scales refer to electron-rich sites, pale and dark blue color scale refer to electron-poor sites)
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microbial transferase enzyme 4JH9 was described with 
the docking simulation study with the lowest energy 
generation to provide the most accurate description of 
the binding mechanism of the complexed macromo-
lecular structure [75, 76]. Protein active site detection, 
which was illustrated to get the site-best score, is neces-
sary for proper binding. Figure 11 illustrates the binding 

affinity of the proposed metal complexes with the tar-
get protein, where the obtained docking results gener-
ated the lowest binding energy exhibited with binding 
of [Ni(L)2Cl2] (−  7.1  kcal/mol), then [Fe(L)2Cl2], and 
[Mn(L)2Cl2] complexes with values − 6.4, and − 6.3 kcal/
mol, respectively. The best-predicted docking results 
were exported from several favorable interactions that 

Fig. 9  ELF map involving several atomic planes in M-TSC complexes, A Fe(II), B Mn(II), and C Ni(II), with three atomic planes Cl1-M-S1, N1-M-S2, 
N2-M-Cl2, (red color scale refers to electron localization areas)



Page 14 of 26El‑Sayed et al. BMC Chemistry  (2025) 19:24

appeared during docking analysis. Such the conventional 
H-bond and carbon hydrogen bond, which are strong 
non-covalent bonds, appears in Ni(II) complex within 
HIS.B 7, GLU.A 115 and ASN.B 50. In Fe(II) complex, 
the significant H-bond interactions present within LYS.A 
92. This type of interaction observed within ASN.B 86 
and ASP.B 17 in Mn(II) complex. Other interaction types 
such as vdW, attractive charges, π–π stacked, π-alkyl 

and π–π T-shaped linked with all the parts of the metal 
complexes. Some unfavorable interactions are exhibited 
in some active sites such as positive-positive, acceptor-
acceptor and donor-donor interactions which may desta-
bilize the docked complexes. These types of unfavorable 
Bumps may decrease the pose stability in its active site, 
while other attraction forces can compensate for this 
instability conformation. For precise affinity prediction, 

Fig. 10  RDG and NCI map for studied TSC and its metal complexes (on the left side colored molecular interaction types were presented, 
and the RDG plot of colored spikes appeared on the right side), blue spikes refer to H-bond formation (blue spikes disappear in the chart), green 
spikes refer to electrostatic interactions and red spikes refer to repulsion interaction
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Fig. 11  Docking score and 3D, 2D interactions of the the synthesized complexes with target bacterial enzyme 4JH9, a Fe(II), b Mn(II), c Ni(II), 
complexes, and d schiff base TSC
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Fig. 11  continued
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the binding affinity of the studied Schiff base ligand TSC 
was evaluated as shown in Fig.  11d. The binding affin-
ity in the predicted active site is about − 5.7, where the 
H-bonding interacting amino acids involve PRO.B 56, 
GLU.A 59 and SER.B 63. The docking findings summa-
rized the binding affinity, that occurs for these studied 
conformers, which is mostly close in behavior leading to 
the prediction of the potency inhibition effect [77]. Fig-
ure  12 represents the co-crystalized ligand within the 
macromolecular target protein, where its docking results 
give some similarity to the tested complexes. To compare 
the in silico docking results for [NiL2Cl2] complex, it was 
found the common amino acids in the active site referred 
to HIS.A 7, GLU.A 45, TYR. A 64, ALA.A 84, ARG.A 94, 
ARG.A 124 and ASN.B 50. In case of [FeL2Cl2], the com-
mon interacted amino acids presented in TYR.A 64 and 
ARG.A 94. These findings summarize the inhibition pre-
diction of the most interactive [NiL2Cl2], then [FeL2Cl2] 
complexes as confirmed from the binding energy values.

Evaluation of MIC analysis
The study using turbidity analyses to assess the impact of 
FeL2Cl2, NiL2Cl2, and MnL2Cl2 on the growth of B. cereus 
and K.pneumoniae isolates in liquid culture media. The 
current study found that MnL2Cl2 have higher MICs of 
B. cereus and K.pneumoniae compared to FeL2Cl2, and 
NiL2Cl2, with MICs of ≤ 128–256 µgmL–1, and ≤ 64–128 
µgmL–1, respectively. While MnL2Cl2 had lower MICs 
(≤ 16–32 µgmL–1) against B. cereus and K. pneumoniae. 
MIC data were evaluated and tabulated in Table 5. 

Antibacterial activity of [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2]
The evolution-inhibitory effects of the Compounds 
[FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] against B. cereus 
and K. pneumoniae were indicated by the antibacterial 
properties of the compounds at varied concentrations 
(25,50,100 µg/ml). According to Figs. 13, 14, 15. Gram-
positive bacteria are more susceptible to the com-
pounds than Gram-negative bacteria. The outstanding 

Fig. 12  Docking Results of the co-crystalized control, a crystallographic protein structure including the control, b 3D-binding mode of the control 
in the active site, c 2D-map representing the type of interactions present through control-docking
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antibacterial activity of compounds against all tested 
isolates in this context is shown in Figs.  13–15. The 
observations of [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] 

corroborate the material’s effectiveness in treating bac-
terial infections. [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] 
were proven to be biocompatible, making them suitable 
for integration into a variety of industrial and biologi-
cal applications [71]. Due to the presence of hydrophilic 
glycoproteins and the physical contact of compounds 
[FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] with the cell walls 
of gram-positive bacteria, the cell walls were damaged, 
allowing compounds to enter gram-positive bacteria. 
Additionally, the heightened membrane permeability 
in gram-positive bacteria causes compounds to leak, 
which facilitates the entry of compounds [78]. Com-
pounds caused lipid peroxidation and the production of 
reactive oxygen species, which killed bacterial cells.

Table 5   MIC of FeL2Cl2, NiL2Cl2, and MnL2Cl2

Isolations Sub-MIC (μgmL−1)

FeL2Cl2 NiL2Cl2 MnL2Cl2

B. cereus  ≤ 128  ≤ 64–128  ≤ 16–32

K. pneumoniae  ≤ 256  ≤ 128  ≤ 32

B. cereus  ≤ 128–256  ≤ 64  ≤ 32

K. pneumoniae  ≤ 128–256  ≤ 64  ≤ 16–32

Fig. 13  Antibacterial activity of [FeL2Cl2] against B. cereus& K.pneumoniae. A (DW as a negative control). B (25µgmL−1). C (50µgmL−1). D 
(100µgmL−1). The results were represented as mean ± SD of three independent experiment. The asterisks indicated that there was a noteworthy 
variation from the negative control. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
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Prediction of binding affinity of the gram‑positive S. aureus 
compared with experimental the gram positive of B. cereus
This study was added to estimate the inhibition effect of 
the designed metal complexes on the other type of micro-
organism (S. aureus) that is referred to gram positive 
bacteria type (thick wall type). It was found that the bind-
ing affinity of the complexes with Gram-positive bacte-
rial thymidylate kinase TMK (ID: 4XWA) take the order 
MnL2Cl2 > NiL2Cl2 > FeL2Cl2 where the binding energy 
values were considered as −  9.4  kcal/mol for MnL2Cl2, 
− 9.0 kcal/mol for NiL2Cl2 and − 8.6 kcal/mol for FeL2Cl2 

(the lower binding energy values give higher binding 
affinity in the active site). Supplementary Figs.  5–7 dis-
play the molecular docking analysis of the metal com-
plexes against the selected type of gram-positive bacteria. 
Supplementary Fig.  8 represents the control inhibitor 
within its active site in the bacterial target protein Anti-
bacterial experiments measured the inhibition efficiency 
of the metal complexes with two types of bacterial strains 
(gram positive and gram negative), it was found that 
gram positive bacteria (B. cereus) give the same results 
with the computational analysis. The docking results 

Fig. 14  Antibacterial activity of [NiL2Cl2] against B. cereus and K.pneumoniae. A (DW as a negative control). B (25µgmL−1). C (50µgmL−1). D 
(100µgmL−1). The results were represented as mean ± SD of three independent experiment. The asterisks indicated that there was a noteworthy 
variation from the negative control. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
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were performed for S. aureus (ID: 4XWA) as the same 
methodology of docking with B. cereus (ID: 4JH9).

Bacterial biofilm inhibition
To evaluate the effect of [FeL2Cl2], [NiL2Cl2], and 
[MnL2Cl2] on bacterial biofilm inhibition, fluorescent 
microscopy was used. The results of the current study 
demonstrated the inhibition of bacterial antibiofilm for-
mation of [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] at a con-
centration of 100  μg/mL. As indicated in Fig.  16, the 
Syto 9 green fluorescence dye stained healthy bacteria, 
whereas propidium iodide red fluorescence dye stained 
the dead bacterial strains suffering from damaged 

membranes. The results showed the control of untreated 
bacteria strains were aggregated and covered with a 
mature biofilm structure, while the bacterial strains that 
were treated with [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] 
MWCNTs were less aggregated and had a less dense bio-
film covering. Taken together, the results of the current 
study reveal the potential biofilm formation inhibition of 
[FeL2Cl2], [NiL2Cl2], and [MnL2Cl2].

Anti‑oxidant activity of [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2]
Compounds [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] that 
have higher antioxidant activity than the control exhib-
its free radical scavenging characteristics, indicating their 

Fig. 15  Antibacterial activity of [MnL2Cl2] against B. cereus and K. pneumoniae. A (DW as a negative control). B (25µgmL−1). C (50µgmL−1). D 
(100µgmL−1). The results were represented as mean ± SD of three independent experiments. The asterisks indicated that there was a noteworthy 
variation from the negative control. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
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ability to interact and neutralize free radicals to prevent 
them from causing damage (Fig. 17). The IC₅₀ values were 
38.33  μg/ml for FeL₂Cl₂, 27.35  μg/ml for NiL₂Cl₂, and 

34.79  μg/ml for MnL₂Cl₂. The IC₅₀ for Ascorbic acid is 
22.35 μg/ml. These compounds also act as scavengers of 
the DPPH + radical due to a decrease in these radicals. To 

Fig. 16  [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2] reduces the level of bacterial biofilm formation
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evaluate a substance’s efficacy and investigate its antioxi-
dant qualities, a method has been found and established 
that is both comprehensive and sufficient. The numerous 
mechanisms and activities of distinct antioxidants can be 
taken into consideration when assessing the antioxidant 
strength utilizing a variety of measurement methodolo-
gies [43]. The current study employed DPPH techniques 
to evaluate a compound’s ability to remove free radicals. 
The DPPH assay has been widely utilized using a range of 
extract concentrations to evaluate the compound’s anti-
oxidant effectiveness because it uses relatively common 
equipment. It also yields results quickly and consistently. 
The most efficient, straightforward, and accurate DPPH 
techniques have been identified through a comparison of 
previously published methodologies for evaluating anti-
oxidant capacity.

We summarized the potential effect of the current 
metal complexes based on their bioactivity in the 
medicinal approach and displayed the results in Table 6.

Conclusion
In this paper new Schiff Base ligand (L) complexes with 
the general formula [M(L)2Cl2] where M = Ni(II), Mn(II), 
and Fe(II), were synthesized. The elemental analysis, 
magnetic susceptibility, molar conductivity, FTIR, and 
UV–visible electronic spectral observations and the 
configurations were performed to coordinate the Schiff 
base through the nitrogen and sulfur atoms. From the 
obtained results, it can be concluded that the bonding of 
all metal ions (M (II)) to the ligand (L) leads to form an 

octahedral structure. DFT calculations exhibited a signif-
icant behavior towards reactivity and the favorable elec-
tronic transitions for Ni(II) complex based on the energy 
gap (EGAP equal 1.190 eV). Also, other quantum chemi-
cal parameters were calculated to predict the complex’s 
stability. The molecular docking approach estimated a 
potent inhibition effect of the studied complexes towards 
the target bacterial enzyme related to the co-crystallized 
reference. In silico study of the designed complexes with 
Bacillus cereus evaluated the potent inhibition activity of 
the metal complexes, especially for [NiL2Cl2] with higher 
binding affinity (−  7.1 kacl/mol). Further in silico study 
was performed on other bacterial strain of gram-positive 
type (s. aureus), the finding supported the experimental 
results with higher bacterial inhibition in presence of 
MnL2Cl2 complex. The docking results evolved a more 
stable Mn(II) conformer (−  9.4 kcal/mol) based on the 
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Fig. 17  Antioxidant activity of [FeL2Cl2], [NiL2Cl2], and [MnL2Cl2]by DPPH assay

Table 6  the docking core and biological data of the studied 
metal complexes

a Binding energy of the two target bacterial protein were selected based on the 
type of the bacterial wall (thick wall gram-positive bacteria)

Complex B.Ea (kcal/mol) 
B. cereus S. 
aureus
(4JH9) (4XWA)

Antibacterial activity 
(25µgmL−1)
B.cereus K.pneumoniae

Anti-
oxidant 
activity
IC₅₀ (μg/
ml)

[FeL2Cl2] − 7.1 − 9.4 16.60 ± 0.01 10.80 ± 0.20 38.33

[NiL2Cl2] − 6.4 − 9.0 17.60 ± 0.01 15.84 ± 0.11 27.35

[MnL2Cl2] − 6.3 − 8.6 18.20 ± 0.20 15.80 ± 0.21 34.79
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binding affinity in the estimated active site. comparing 
these results with experimental ones, MnL2Cl2 had lower 
MICs (≤ 16–32  µgmL–1) against B. cereus& Pneumonia 
in MIC analysis. Using fluorescent microscopy study 
revealed the potential biofilm formation inhibition of 
[FeL2Cl2], [NiL2Cl2], and [MnL2Cl2]. Anti-oxidant activ-
ity evaluated a significant result in complex behavior to 
remove free radicals. The IC₅₀ values of the antioxidant 
activity were 38.33  μg/ml for FeL₂Cl₂, 27.35  μg/ml for 
NiL₂Cl₂, and 34.79  μg/ml for MnL₂Cl₂, where the IC₅₀ 
for Ascorbic acid is 22.35 μg/ml. The biological studies in 
this research may applied on other series of metal can-
didates to have a future direction as potent inhibitors in 
medicinal strategy.
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