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Abstract
In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from 
optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected 
to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. 
This study aims to overcome this drawback via random forest, an ensemble machine learning model. First, in 
vitro beta-lactamase inhibitory screening was performed using an in-house chemical library. The in vitro results 
were later used as a validation. Consequently, we optimized docking protocols for AutoDock Vina and DOCK6 
programs. With an appropriate scoring function, we found that DOCK6 could identify up to 70% of all active 
molecules, double the inappropriate. Further consensus analysis reduced the success rate to 50%. Simultaneously, 
a false positive rate was down to 16%, which was experimentally favorable for a drug search. Finally, we trained 
two quantitative structure-activity relationship (QSAR) models using logistic regression as a reference model 
and a random forest as a test model. After combining consensus docking results, random forest-based QSAR 
outperformed a logistic regression by restoring the success rate to 70% and maintaining a low false positive rate 
of around 21%. In conclusion, this study demonstrated the benefit of using a random forest (machine learning)-
based QSAR model to overcome a standard consensus docking limitation in beta-lactamase inhibitor search as a 
proof-of-concept.

Highlights
	• An optimized DOCK6 scoring can maximize the success in identifying active molecules by up to 70%.
	• Consensus docking can significantly reduce the false positive rate in determining experimental bioactive 

molecules compared to the best docking.
	• Integrating a random forest-based QSAR model into a virtual screening workflow extends the limited success 

rate of consensus docking.
	• An in-house screening reveals the first-time report of three bio beta-lactamase inhibitors.
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Introduction
Since its introduction in the 1970s, computational-aided 
drug discovery and design (CADD) has continuously 
developed. A recent publication states that molecular 
docking is still among the most popular drug research 
tools used by leading academic laboratories and phar-
maceutical companies, even though it was introduced 
nearly five decades ago [1]. Molecular docking belongs 
to a structural-based virtual screening (SBVS) approach 
[1]. Therefore, a 3D structure of the target protein with 
a known binding site is required to predict molecular 
interactions and binding affinity between the target and 
compounds of interest. Molecular docking has con-
tributed to the success of multiple drug developments; 
for example, two recent anticancer drugs, Osimertinib 
and Venetoclax, were approved in 2017 and 2016 by the 
US FDA [2, 3]. However, molecular docking has a sig-
nificant limitation regarding a low percentage of success 
rate and a high percentage of false positive rate, leading 
to undesirable accuracy [4]. This limitation only moder-
ately affects conventional drug research since obtaining 
a few hit compounds from a virtual screening can gen-
erally satisfy the classical CADD in the early drug devel-
opment phase. However, bacteria exhibit rapid drug 
resistance development. Therefore, this limitation can be 

a significant drawback. To address this issue, the docking 
protocol must be optimized to correspond to biological 
data and improve the docking accuracy, which we applied 
in this study. Additionally, the optimized docking proto-
col is the first step toward sustainable energy consump-
tion for computation in the future, as public concern is 
rising [5].

Various approaches have been proposed for further 
optimization, along with the docking protocol [6]. A 
ligand-based model like a quantitative structure-activity 
relationship or QSAR model is one of the most com-
monly utilized approaches together with molecular 
docking to improve the computational search [6]. Unlike 
molecular docking, the QSAR model is a statistical model 
developed by molecular descriptors, like physio-chemical 
properties and/or molecular fingerprints obtained from 
active and inactive molecules [7]. According to recent 
studies, empowering the QSAR model with a machine-
learning (ML) algorithm can improve computational 
drug discovery outcomes [6, 7]. Therefore, we aim to 
overcome the molecular docking challenge (low accuracy 
rate) by optimizing the docking protocol and combining 
it with the ML-QSAR model in this study.

Random forest (RF) is one of the most popular ML 
models [8] and is likely to outperform other models, such 
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as support vector machines (SVM) and decision trees 
(DT) [9, 10]. RF is an ensemble ML model consisting of 
multiple sub-models [11]. This theoretically makes the 
RF prone to having fewer problems with model overfit-
ting since it decides based on the average outcomes of its 
sub-models. Also, it leads to a more generalized model 
than other models like SVM and DT, which consist of 
one model [11]. Most importantly, RF can handle a high-
dimensional dataset (extensive data features) [11], mak-
ing RF more suitable for QSAR study. Therefore, the RF 
model was chosen to serve our purpose.

As mentioned earlier, the fast development of antimi-
crobial-resistant bacteria is one of the factors pressuring 
pharmaceutical research and development. It is com-
monly known that beta-lactamase is one of the common 
resistance mechanisms in bacteria and significantly con-
tributes to an ongoing global health problem [12]. There-
fore, we select beta-lactamase as our target to tackle the 
issue. Since 2022, we have invented a chemical library at 
the Division of Pharmaceutical Biology, Department of 
Biology, Faculty of Natural Sciences, Friedrich-Alexan-
der-Universität Erlangen-Nürnberg, and it was named 
FARM-BIOMOL (FAU PhaRMaceutical biology-BIOac-
tive MOLecules). This chemical library aims to provide 

an essential resource for initiating scientific research to 
fight against the bacterial antibiotic-resistant problem. 
Thus, FARM-BIOMOL was used in our study. Further 
information can be found on the website ​(​​​h​t​​t​p​s​​:​/​/​p​​h​a​​r​m​b​
i​o​-​f​a​u​-​e​r​l​a​n​g​e​n​.​g​i​t​h​u​b​.​i​o​/​F​A​R​M​-​B​I​O​M​O​L​/​​​​​) [13].

As shown in Fig. 1, this study has two main workflows: 
(i) an in vitro enzyme-binding beta-lactamase inhibi-
tory screening and (ii) the computational simulation and 
modeling. We screened eighty-nine compounds in our 
in-house chemical library, FARM-BIOMOL. The in vitro 
result was used as experimental validation data. Two 
standard molecular docking programs, AutoDock (AD) 
Vina [14] and DOCK6 [15], were used to perform virtual 
screening. The results from both dockings were cross-
examined to evaluate a consensus docking. Finally, we 
constructed an RF-based QSAR model to improve con-
sensus docking performance and used a logistic QSAR 
model as a baseline. Therefore, in this study, we provided 
a proof-of-concept of using the RF-based QSAR model to 
overcome the consensus docking challenge and improve 
virtual screening performance.

Fig. 1  Graphical summary of two experimental workflows used in this study with main significant results. (i) represents an experimental workflow of an 
in vitro beta-lactamase inhibitory screening of a biomolecule from the FARMBIOMOL chemical library. The red dashed line indicates a cut-off criterion at 
50% inhibition. (ii) represents virtual and modeling workflow from two molecular docking software (AutoDock Vina and DOCK6) and a QSAR model with 
and without machine learning. MS PowerPoint is used to generate this figure

 

https://pharmbio-fau-erlangen.github.io/FARM-BIOMOL/
https://pharmbio-fau-erlangen.github.io/FARM-BIOMOL/
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Results
In vitro enzyme-binding beta-lactamase inhibitory 
screening
Start with a brief introductory sentence saying what was 
done in these experiments. We first screened eighty-nine 
compounds from the library, and later, we found ten com-
pounds demonstrating a promising positive effect against 
the beta-lactamase enzyme, showing an inhibitory activ-
ity of around and more than 50%, as shown in Fig. 2. We 
used potassium clavulanate as a clinical reference, exhib-
iting a 92 ± 1.88% inhibitory effect against the beta-lacta-
mase enzyme (last column in Fig. 2, Left). Therefore, our 
screening is reliable based on the known positive control 
outcome. Notably, we used standard error in Fig. 2 (Left) 
due to a high deviation of less effective compounds due 
to a solubility problem. This problem is common in drug 
screening studies, especially when encountering natu-
ral products [16]. However, it is worth knowing that all 
active compounds’ standard deviation is in the 14–0% 
range, indicating a high reproducibility according to the 
previous report [17]. Complete screening data with stan-
dard deviation was provided in the supplementary file.

Molecular docking and consensus docking
AD Vina
We validated the established docking protocol (described 
in the Methods section) through the redocking approach. 

The validation showed a satisfied outcome of the RMSD 
value of less than 3 Å. We provided a validation result 
in a supplementary file. Therefore, the result indicated 
a reliable outcome from our docking protocol. Later, 
this protocol was used to predict an anti-beta-lacta-
mase activity of all eighty-nine compounds listed in the 
library. As a result, the average AD Vina docking score 
was − 5.23 ± 0.86  kcal/mol, the minimum score was 
− 3.75 kcal/mol, and the maximum score was − 6.96 kcal/
mol. Figure  3A exhibited a normal distribution pattern 
of obtained results from AD Vina. Then, we used the 
2D scatter plot between the AD Vina docking score and 
experimental data to evaluate the predictability of AD 
Vina. The half value of each axis was set as a cut-off, as 
shown in Fig. 3B. A confusion matrix was used to simplify 
the relationship between AD Vina and experimental data. 
Figure  3C demonstrated that AD Vina suggested forty-
six compounds as active components against beta-lac-
tamase using the cut-off value. Six of those components 
were true positive, experimentally exhibiting more than 
50% inhibitory effect, while the other forty compounds 
were false positive. This led to a high false positive rate 
of nearly 51%. Finally, the author used a receiver operat-
ing characteristic curve and its area under the curve or 
ROC AUC score for an overall evaluation. The score of 
AD Vina was 0.54, which was slightly higher than a ran-
dom guess score of 0.50. Even though AD Vina did not 

Fig. 2  Anti-beta-lactamase inhibitory screening of eighty-nine compounds in the FARM-BIOMOL chemical library. The red dashed line indicates a selec-
tion criterion for an active inhibitory effect at 50% inhibition (Left). Ten active compounds pass the selection criteria (Right). All compounds are tested at 
the same concentration of 2 mg/ml. This figure is generated by Jupyter Notebook using Matplotlab and RDKit packages
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provide a satisfactory ROC AUC score, it could detect six 
out of ten experimental bioactive compounds. Therefore, 
AD Vina’s results were kept for further evaluation using a 
consensus docking approach.

DOCK6
Unlike AD Vina, DOCK6 software offers various scor-
ing functions to predict an enzyme-ligand binding affin-
ity. Initially, we used a default function (grid search 
score). DOCK6 would be called DOCK6gs from this 
point onward. Like AD Vina, the established DOCK6gs 
docking protocol was validated and showed a satisfac-
tory outcome before application. Further information 
on the validation result can be found in the supplemen-
tary information. As a result, the average DOCK6gs 
score was − 37.68 ± 7.47  kcal/mol, the minimum score 
was − 26.26  kcal/mol, and the maximum score was 
− 65.16 kcal/mol. The obtained DOCK6gs results did not 
show a normal distribution like AD Vina (Fig.  3A) but 

exhibited a stewed pattern toward a high score (Fig. 4A). 
Later, we constructed a 2D scatter plot using the same 
criteria as AD Vina. The graphical analysis showed only 
three experimental positive compounds were detected 
by DOCK6gs (Fig.  4B, red line). Since the distribution 
of the DOCK6gs was abnormal, it was rational to recen-
ter the DOCK6gs docking score on the Y-axis by ignor-
ing an outliner datapoint [18, 19]. Theoretically, it might 
recruit more of an actual positive candidate. Unfortu-
nately, DOCK5gs results did not improve after recenter-
ing, as demonstrated in Fig.  4B, blue line. A confusion 
matrix (Fig. 4C) summarized a consequence from a scat-
ter plot after recentering. Figure  4D exhibited a value 
of 0.57 from the AUC ROC score of DOCK6gs, which 
was slightly higher than AD Vina (0.54). Even though 
DOCK6gs’ true positive was only half of AD Vina, it 
showed a significantly lower false positive (high speci-
ficity). Therefore, the ROC AUC score of DOCK6gs was 
better than the AD Vina score. In conclusion, DOCK6gs’s 

Fig. 3  AD Vina’s predictability evaluation. (A) AD Vina’s results distribution. (B) A 2D scatter plot between AD Vina and experimental data. The red dashed 
line indicates a selection criterion at the average value of each axis. A label close to each point in the plot represents a compound number in the library. 
(C) A confusion matrix summarizes the 2D scatter plot. (D) AD Vina’s ROC curve and area. This figure is generated by Jupyter Notebook using the Mat-
plotlab package
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result was unsatisfactory due to a low number of true 
positive candidates, determining three out of ten active 
compounds. Therefore, we changed a DOCK6gs docking 
score function to a descriptor function, which we pro-
vided in the following section.

To improve the result, we rescored DOCK6gs’ dock-
ing outcomes using another scoring function, a descrip-
tor function, and it was named DOCK6des. A procedure 
similar to the one mentioned above was applied here. The 
average DOCK6des score was 34.66 ± 5.06 kcal/mol. The 
minimum DOCK6des score was 14.24 kcal/mol, and the 
maximum was 42.13  kcal/mol. The DOCK6des’ results 
exhibited a similar distribution pattern to DOCK6gs, as 
shown in Fig.  5A. Only three active components were 
detected in an initial evaluation (Fig. 5B, red line). How-
ever, after recentering the DOCK6des outcomes, four 
more active compounds could be included, as presented 
in Fig.  5B, blue line. Eventually, seven bioactive mole-
cules were detected using a descriptor score function. A 

confusion matrix of DOCK6des was provided in Fig. 5C. 
The false positive rate of DOCK6des was around 29%, 
Table  1. The ROC AUC score of DOCK6des was 0.7 
(Fig. 5D), which indicated a generally accepted discrimi-
nation power [20]. Since DOCK6des exhibited a satisfac-
tory result, therefore, DOCK6des was chosen for further 
analysis.

Consensus docking
Consensus docking has been widely applied in virtual 
screening studies to improve docking predictability 
[21]. The basic concept of consensus docking is that if a 
molecule shows a lower binding score in more than one 
docking method, it is likely that this molecule is experi-
mentally active [22]. At least two docking results are 
analyzed to identify an overlap [21, 22]. Therefore, we 
cross-examined AD Vina’s and DOCK6des’ outcomes. 
Figure 6 exhibited the consensus docking result. Consen-
sus docking detected only half of the bioactive molecules 

Fig. 4  DOCK6gs’ predictability evaluation. (A) DOCK6gs results distribution. (B) A 2D scatter plot between DOCK6gs and experimental data. The red 
dashed line indicates a selection criterion at the average value of each axis. The blue dashed line is a new recentering criterion point after ignoring an 
outliner data of the y-axis (DOCK6gs scoring function). Points in the plot represent a compound number in the library. (C) A confusion matrix summarizes 
the 2D scatter plot. (D) DOCK6gs’ ROC curve and area. This figure is generated by Jupyter Notebook using the Matplotlab package
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(five out of ten), less than AD Vina and DOCK6des, 
consequently detecting six and seven active substances. 
However, consensus docking significantly predicted 
lower false positives (only 13 molecules or 16% false posi-
tive rate) compared to AD Vina (40 molecules or nearly 
51% false positive rate) and DOCK6des (23 molecules or 
around 29% false positive rate). These contributed to a 

higher accuracy rate of 79.78% from the consensus dock-
ing, as shown in Table 1. Still, consensus docking’s ROC 
AUC score of 0.66 (Fig. 6B) was slightly less than DOCK-
6des, which was 0.70 (Fig. 5D).

Next, we introduced the docking consensus score to 
prioritize consensus docking results by combining each 
molecule’s AD Vina and DOCK6des scores. A molecule 

Table 1  Overall performance of each docking model
AD Vina DOCK6gs DOCK6des Consensus docking

True Positive 6.00 3.00 7.00* 5.00
% True Negative 39.00 67.00* 56.00 66.00
% False Positive 40.00 12.00* 23.00 13.00
False Negative 4.00 7.00 3.00* 5.00
% Sensitivity (% True Positive Rate) 60.00 30.00 70.00* 50.00
% Specificity 49.37 84.81* 70.88 83.54
% False Positive Rate 50.63 15.19* 29.12 16.46
% Accuracy 50.56 78.65 70.79 79.78*
ROC_AUC 0.54 0.57 0.70* 0.66
Bold and asterisk indicate the best value

Fig. 5  DOCK6des’ predictability evaluation. (A) DOCK6des results distribution. (B) A 2D scatter plot between DOCK6des and experimental data. The red 
dashed line indicates a selection criterion at the average value of each axis. The blue dashed line is a new recentering criterion point after ignoring an 
outliner data of the y-axis (DOCK6des scoring function). Points in the plot represent a compound number in the library. (C) A confusion matrix summarizes 
the 2D scatter plot. (D) DOCK6des’ ROC curve and area. This figure is generated by Jupyter Notebook using the Matplotlab package
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with a lower score after the docking score combination 
was ranked as a higher priority than a higher score. Later, 
we plotted a cumulative success rate against tested mol-
ecule sample size from each docking method according 
to its score, as presented in Fig. 6C. Consensus docking 
outperformed AD Vina and DOCK6des predictability 
alone. With a consensus approach, testing only 10% of 
our chemical library (nine compounds) could detect 50% 
of the bioactive molecules. Five out of nine compounds 
predicted by consensus docking showed a strong inhibi-
tory effect against beta-lactamase. Meanwhile, AD Vina 
and DOCK6des needed 17% (fifteen molecules) and 18% 
(sixteen molecules) to achieve the same level as consen-
sus docking.

Classification random forest (RF) descriptor-based QSAR 
model
Dataset recategorization
None of the docking approaches were able to detect 
all experimental bioactive molecules from the library. 

Docking could only detect three to seven active com-
pounds depending on software and scoring function. To 
solve this problem, we applied a classification machine 
learning algorithm (random forest or RF) to construct 
a descriptor-based QSAR model. However, only ten out 
of eighty-nine molecules (around 11%) were considered 
active experimentally, as shown in Fig.  2. This led to a 
highly imbalanced dataset to train the ML model with 
an imbalance ratio of 7.9 when 1 is an ideal value, indi-
cating a balanced dataset [23]. Training a model with 
a balanced dataset (active and inactive) is essential to 
maximize the model’s performance [24]. Therefore, we 
recategorized the experimental data into two categories 
to train the RF-based QSAR model more effectively. The 
first new category was a biologically observable group. 
All molecules that exhibited any inhibitory effect (% 
inhibition > 0) belonged to this group. The second group 
was non-biologically observable with % inhibition = 0. As 
a result, thirty-six compounds (36/89 or 39%) were re-
grouped and defined as a new-active group (biologically 

Fig. 6  Consensus docking score predictability evaluation. (A) A confusion matrix of consensus docking. (B) consensus docking’s ROC curve and its area 
under the curve. (C) A cumulative success rate plot against a molecule sample size of each docking model up to 50% of the sample size from the chemical 
library. A total sample size result is shown in the small plot inside. This figure is generated by Jupyter Notebook using the Matplotlab package
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observable group). This group was further categorized 
into two subgroups according to the potency. The first 
(weak) sub-group consisted of twenty-six weak inhibi-
tors, and the second (strong sub-group) was ten robust 
inhibitors. The remaining fifty-three compounds (53/89 
or 61%) were re-categorized as a new-inactive group 
(non-biologically observable group). In conclusion, data 
recategorization led to a more balanced dataset with an 
imbalance ratio of 1.5, allowing us to train the RF-based 
QSAR model effectively.

Training and testing set allocation
Nearly all data points from all categories, except a strong 
sub-group, were randomly split into training and testing 
sets using four-fold validation techniques to construct 
the RF model. The ten molecules from a strong inhibition 
sub-group were manually split. Five compounds detected 
by consensus docking were allocated to a training set. 
Three out of five molecules escaping docking were cho-
sen for a training set. We manually picked compound 
numbers 30, 35, and 87 for the testing set. Compound 
number 35 could escape from AD Vina and DOCK6des, 
while AD Vina and DOCK6des could identify compound 
numbers 30 and 87 accordingly. Picking these three com-
pounds into the testing set allowed us to evaluate the 
RF model performance corresponding to the docking 
method.

RF descriptors-based QSAR model generation and 
evaluation
After data scrubbing, 896 out of 1,875 descriptors from 
the PaDEL software remained. Information regarding 
these remaining descriptors is provided in the supple-
mentary file. A binary consensus docking descriptor was 
added as an additional feature. Therefore, 897 descrip-
tors in total were used to train RF-based QSAR models. 
Consequently, we generated thirty RF models by alter-
ing the random state parameter from 1 to 30 and used 
a logistic regression model as a baseline. A comprehen-
sive evaluation of all created models can be found in the 

supplementary file. Five of those thirty generated models 
included an additional consensus docking descriptor in 
their models. The best RF model with consensus dock-
ing showed a false positive rate of 29% (Table 2) and an 
ROC AUC score of 0.63 from the testing set, Fig. 7A. On 
the other hand, the LR model’s false positive rate was 
nearly 43% (Table 2), and the ROC AUC score of 0.51 was 
slightly better than a random guess (the ROC AUC score 
of 0.50), Fig. 7A.

The remaining twenty-five RF models did not consider 
the consensus docking descriptor. The best RF model 
testing set without consensus docking exhibited a low 
% false positive rate of 21%, Table  2, and a slightly bet-
ter ROC AUC score of 0.67, Fig. 7B, than the model with 
consensus docking. The LR model without consensus 
docking was also better than the model with docking. 
Still, the RF model outperformed the LR model here. We 
provided the overall performance of all models in Table 2.

Detailed analysis showed that both RF models could 
predict two molecules (compound 30 and 35) from a 
substantial inhibition sub-group but not compound 87. 
This analysis was provided in the supplementary file 1. 
In contrast, the LR models only predicted compound 30, 
which DOCK6 also detected. Noticeably, compound 87 
was detected by AD Vina but not from both ML mod-
els. Therefore, it inferred that the AD Vina results had 
less impact on the ML model than DOCK6. Furthermore, 
compound 35 was able to escape all docking approaches. 
However, the RF model could predict compound 35 cor-
rectly. Therefore, this indicated the benefit that the RF 
model could compensate for the docking methods in bio-
active molecule determination.

Noticeably, some of the top ten important features of 
the models came from the same physio-chemical proper-
ties, as described in the following sentences and shown in 
Fig. 8. For example, AATSC0m and AATS61i were from 
the autocorrelation of the topological structure descrip-
tor, and SpMin6_Bhe, SpMax4_Bhm, SpMaxB_Bhe, 
SpMAD_Dt, SpDiam_Dzv, VR2_Dzi, VR1_Dzi, and VR1_
Dze were from the adjacency matrix descriptor. However, 

Table 2  Overall performance of each model
RF wt docking LR wt docking RF w/o docking LR w/o docking

Training Testing Training Testing Training Testing Training Testing
True Positive 27.00 5.00* 27.00 4.00 27.00 5.00* 27.00 5.00*
True Negative 39.00 10.00 39.00 8.00 39.00 11.00* 39.00 8.00
False Positive 0.00 4.00 0.00 6.00 0.00 3.00* 0.00 6.00
False Negative 0.00 4.00* 0.00 5.00 0.00 4.00* 0.00 4.00*
% Sensitivity (% True Positive Rate) 100.00 55.56* 100.00 44.44 100.00 55.56* 100.00 55.56*
% Specificity 100.00 71.43 100.00 57.14 100.00 78.57* 100.00 57.14
% False Positive Rate 0.00 28.57 0.00 42.86 0.00 21.43* 0.00 42.86
% Accuracy 100.00 65.22 100.00 52.17 100.00 69.57* 100.00 56.52
ROC_AUC 1.00 0.63 1.00 0.51 1.00 0.67* 1.00 0.56
Bold and asterisk indicate the best value of the testing sets of each model
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consensus docking was not listed among the top ten most 
important features, and the relatively important value of 
consensus docking was ten-fold less than that of TIC3 
(the most important feature of the model).

Discussion
Molecular docking plays an essential role in current drug 
discovery research [25]. Multiple docking programs offer 
various search algorithms to predict protein-ligand inter-
actions, helping to identify new drug candidates [1, 25]. 
Therefore, optimizing the docking method before making 
a prediction is crucial to obtain the highest possible suc-
cess rate. This study used two popular docking software 
(AD Vina and DOCK6) to optimize the docking search 
strategy for bioactive beta-lactamase inhibitors. We 
evaluated an in-house chemical library’s in vitro enzyme 
inhibition activity. The obtained experimental data was 
used as an experimental validation to cross-examine 
molecular docking and train ML-based QSAR models. 

As mentioned above, our result proved that combining 
the ML-based QSAR model with docking could surpass 
the standalone standard consensus docking challenge 
with a limited success rate.

Our screening experiment revealed the first-time 
report of the anti-beta-lactamase activity of two quinone 
metabolites (2-hydroxy-1,4-naphthoquinone or lawsone, 
compound 17, and hydroquinone, compound 18). Law-
sone and hydroquinone are well-known plant secondary 
metabolites with wide-range biological potentials, from 
antioxidant and antimicrobial to anticancer proper-
ties [26–28]. Even in the current cosmeceutical market, 
a tropical product containing these metabolites is avail-
able, such as a natural hair dye product from Lawsonia 
inermis plant containing lawsone [26] and a prescribed 
depigmentation cream containing hydroquinone [29]. 
Still, our study has opened another potential application 
of lawsone and hydroquinone in inhibiting bacterial beta-
lactamase activity against antibiotic-resistant bacteria. 

Fig. 7  RF descriptors-based QSAR models predictability. (A) An ROC AUC score of the best RF model with consensus docking compares to the best LR 
model with consensus docking and a random guess. (B) An ROC AUC score of the best RF model without consensus docking compares to the best LR 
model with consensus docking and a random guess. (C) A confusion matrix of the testing set of the RF model with consensus docking. (D) A confusion 
matrix of the testing set of the RF model without consensus docking. This figure is generated by Jupyter Notebook using the Matplotlab package
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However, it is essential to note that exploring these com-
pounds at a high concentration and/or for an extended 
period of time can cause toxicity [29, 30]. Therefore, 
utilizing a product containing these metabolites with-
out supervision from a certified health provider is not 
recommended.

Furthermore, our screening also experimentally con-
firmed a predictive anti-beta-lactamase simulation of 
the previous study of polyphenol derivatives such as 
protocatechuic acid and tannin [31]. Unlike lawsone and 
hydroquinone, protocatechuic acid and tannin are typi-
cal natural products considered safe (GRAS) by the US 
Food and Drug Administration (FDA). According to the 
substances added to the food inventory list from the US 
FDA, they can be used in the food industry as flavoring 
and food additive agents. Therefore, developing an oral 
application from protocatechuic acid and tannin against 
bacterial beta-lactamase might be possible with further 
investigation.

Finally, our results agreed with earlier reports of known 
beta-lactamase inhibitors like salicylic acid [32], chloro-
genic acid [33], quercetin, and its derivatives [34]. Inter-
estingly, we obtained another promising activity from the 
flavonoid derivative, 6-hydroxyflavone, for the first time. 
To date, vast biological activities have been reported from 
polyphenols and flavonoids. Still, our study could reveal 
the potential of 6-hydroxyflavone for the first time, indi-
cating that our understanding of these metabolic classes 
is incomplete. Therefore, further biological investigation 
should be continued to reveal the hidden pharmaceutical 
potentials of these metabolites.

In summary, this study reveals the first anti-beta-lac-
tamase effect of three bioactive molecules, namely two 
quinones and one flavonoid. According to a recent study, 
only a fraction of beta-lactamase and inhibitor interac-
tions were known [35]. Therefore, our screening experi-
ment has filled the knowledge gap by revealing new 
beta-lactamase-inhibitor interactions. This will provide 

Fig. 8  Top ten important features from RF models. (A) Important features from the RF model without docking consensus. (B) Important features from the 
RF model with consensus docking. (C) The relative importance of consensus docking as an important feature in the RF model. Highlighted colors indicate 
the same physiochemical property of descriptors as important features. This figure is generated by Jupyter Notebook using the Matplotlab package
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better data resources to construct more reliable ML and 
deep learning models for beta-lactamase search in the 
future.

In docking protocol optimization, multiple evaluation 
criteria can be used [36]. This study focused on three 
main criteria for a docking evaluation. The first and the 
most important is the success rate of experimental bioac-
tive molecule identification. The second is a false positive 
rate, and the third is an overall docking model evalua-
tion via ROC AUC score. First, the AD Vina protocol 
was optimized. AD Vina offers only one scoring func-
tion. Therefore, it is simple to optimize. As a result, AD 
Vina provided a satisfactory outcome with 60% accuracy 
in detecting bioactive compounds with a default scor-
ing function. However, the false positive rate of AD Vina 
was unexpectedly high, around 51%. According to Weiss’ 
report, the false positive rate might be as high as 75% in 
a particular docking system [37]. This led to an unfavor-
able general performance of the model with a ROC AUC 
score of 0.54.

We further optimized the docking score function 
through the DOCK6 program to improve docking per-
formance and found that the scoring function was essen-
tial in DOCK6 predictability. Applying a default grid 
score function minimized the success rate to as low as 
30%. The success rate rose to 70% after changing the 
DOCK6 scoring function to the descriptor score. Fur-
thermore, the false positive rate was also below 30%. As a 
result, DOCK6, with the descriptor score, generally per-
formed well with a ROC AUC score of 0.70, indicating 
an accepted discrimination power. Luo and colleagues 
reported a similar finding from DOCK6 virtual screening 
for Streptococcus mutans sortase A inhibitor [38]. Luo’s 
study demonstrated that optimizing DOCK6 scoring 
functions improved discrimination power to nearly 90%, 
surpassing AutoDock’s performance of around 65% [38].

Later, we conducted a consensus docking analysis [21, 
22]. Adopting the same evaluation criteria above, the per-
formance of consensus docking was slightly less effective 
than the DOCK6 model. The success rate was reduced to 
50%. However, the false positive was also down to 16%. 
Even though the error was reduced by nearly half, the 
consensus docking could not cope with a suppressed suc-
cess rate, which led to a slightly lower general model per-
formance (ROC AUC score = 0.66) than DOCK6 (ROC 
AUC score = 0.70). However, consensus docking natu-
rally cannot outperform the best model since it identifies 
overlapping results from both dockings [21, 22]. The true 
benefit of consensus docking lies in the cumulative bioac-
tive determination’s success rate. As presented in Fig. 6C, 
the plot showed that consensus docking required only 
the top 10% of the result to detect 50% of the experimen-
tal bioactive molecules. On the other hand, standalone 
docking methods require 17% as the minimum sample 

size to achieve the same success rate level as consensus 
docking. Our findings here aligned with Gupta’s experi-
ments [39]. Gupta and coworkers revealed that covering 
the top 10% consensus docking result led to a 65% suc-
cess rate in identifying active molecules against Plasmo-
dium falciparum dihydrofolate reductase, while another 
docking approach like AD Vina and DOCK6 needed a 
larger sample size to reach the same level [39].

Even though the consensus docking approach 
increased the chance of bioactive identification and ben-
efited the actual in vitro drug search, it also came with 
a great sacrifice. Half of the active compounds could 
escape this approach. Integrating a QSAR model with 
docking is one solution among the others that has been 
proposed to overcome this problem [6]. ML classification 
algorithms like RF have been reported to be more effec-
tive than other models [9]. Therefore, we selected RF to 
train a QSAR model. The result section showed that the 
RF-based QSAR model outperformed the classical LR-
based QSAR model in all aspects. Most importantly, the 
RF models could detect two more bioactive compounds, 
one escaping all docking approaches. Therefore, combin-
ing consensus docking with the RF-based QSAR model 
extended the success rate by 20% in identifying bioac-
tive molecules against beta-lactamase. The combined 
approach offered a success rate of 70% in total, equal to 
that of the best predictive model. Furthermore, the RF-
based QSAR model maintained a low false positive rate 
of 21%, slightly higher than the lowest rate of 16%.

For a more comprehensive analysis, we compared our 
RF-based QSAR model performance to other existing 
models for beta-lactamase inhibitor search. However, 
we could only evaluate our model since other modes did 
not integrate docking. To this end, our RF classification 
models (with 0.67 ROC AUC score) generally performed 
better than a previous report by Anat and Gupta, with an 
ROC AUC score of nearly 51% [40]. However, Anant and 
Gupta’s model exhibited a 79% accuracy, which is more 
accurate than ours with almost 70%. Still, our accuracy 
score is better than that of another RF model by Papas-
tergiou et al. [41], with an accuracy score of around 57%. 
According to our knowledge, Shi and colleagues reported 
the best RF-based QSAR model for beta-lactamase inhib-
itor virtual screening with a high ROC AUC of 0.88 and 
an accuracy score of 76% [42]. However, it is essential to 
note that Shi and colleagues used commercial software to 
generate descriptors and a much larger dataset (around 
a thousand compounds). On the other hand, we used 
an open-source program to generate physiochemical 
descriptors and smaller datasets (nearly a hundred com-
pounds). Conn and coworkers demonstrated these fac-
tors contributed to the model’s performance [43]. Even 
if this is the case, our models provide a unique advan-
tage over Shi’s model. Our model was trained using the 
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results of one biological experiment, allowing the mod-
els’ predictions to be validated biologically easily. In 
contrast, Shi’s model used multiple results from various 
experimental conditions, leading to a practical problem 
in selecting a proper biological experiment to confirm a 
model prediction correctly.

To improve our model performance further, we plan to 
follow Shi’s study. Shi and colleagues showed that using 
SMILE (simplified molecular-input line-entry system) 
features and modifying descriptors through principle 
component analysis (PCA) could improve the model’s 
ROC AUC and accuracy scores [42]. Therefore, we plan 
to alter our current model to improve performance 
according to Shi’s report.

Conclusion
In the current study, we proposed an alternative approach 
to overcome the consensus docking challenge by incor-
porating ML into the QSAR model. The obtained result 
indicated that an integrated ML-based QSAR model with 
an optimized docking protocol benefited a beta-lacta-
mase inhibitor virtual screening by improving a success 
rate in bioactive molecule identification and maintaining 
a low false positive rate. Therefore, the current study laid 
an essential scientific background for further developing 
a combination of a virtual docking and ML-based QSAR 
model for beta-lactamase inhibitor search.

Methods
Chemicals and enzyme
We used an in-house chemical library, namely FARM-
BIOMOL (FAU PhaRMaceutical biology-BIOactive 
MOLecules) ​(​​​h​t​​t​p​s​​:​/​/​p​​h​a​​r​m​b​i​o​-​f​a​u​-​e​r​l​a​n​g​e​n​.​g​i​t​h​u​b​.​i​
o​/​F​A​R​M​-​B​I​O​M​O​L​/​​​​​) [13] at the Division of Pharma-
ceutical Biology, Department of Biology, Faculty of 
Natural Sciences, Friedrich-Alexander-Universität Erlan-
gen-Nürnberg, Erlangen, Germany. This library consists 
of eighty-nine compounds. Most of the compounds are 
natural products or their derivatives. The majority of the 
compounds were purchased commercially. However, 
some substances were self-isolated or synthesized in our 
laboratory. Beta-lactamase from Bacillus cereus 569/H9, 
nitrocefin, and potassium clavulanate were purchased 
from Sigma.

In vitro enzyme-binding screening assays
The in vitro assay was modified from an existing protocol 
from the previous report [44]. We used 100 mM citrate 
buffer solution (pH 6) with 10 mM of ZnSO4.7H2O and 
0.2% w/v NaN3 as a buffer solution. In the preparation 
step, all samples from the library were prepared at the 
same concentration of 4 mg/ml with a 4% DMSO as the 
maximum concentration for a sample stocking solution. 
For the assay, we tested the anti-beta-lactamase activity 

in a 96-well plate following the instructions below. First, 
50  µl of buffer solution and 50  µl of 80x dilution from 
1  mg/ml beta-lactamase solution (enzyme activity 75 
mUnit/mg based on an in-house measurement, follow-
ing a protocol from Sigma) were added to the wells. Later, 
the wells were mixed in 50  µl of 4  mg/ml sample solu-
tion or 0.4  mg/ml potassium clavulanate or 4% DMSO 
buffer solution. Then, 15 min of the incubation time at 37 
degrees occurred. Finally, another 50 µl of 100x dilution 
of 1 mg/ml of nitrocefin (substrate) solution was added. 
The reaction was observed after 30 min by a microplate 
reader at 490  nm. As shown in the equation below, the 
percent inhibition was calculated as a fix-time measure-
ment after sample color deduction. All tests were per-
formed in triplicates.

	

% inhibition =
Absorptioncontrol at 30 mins − Absorptionsample at 30 mins

Absorptioncontrol at 30 mins

× 100

Molecular docking preparation
Ligand preparation
The chemical information of all chemicals in the library 
was stored in SMILE format and obtained from the Pub-
Chem Database. Each compound’s 3D chemical structure 
was generated and energetically minimized using a gen-
eral amber forcefield (GAFF) from Open Babel software 
(version 3.1.0) [45]. Following Zhu’s study, we used GAFF 
to optimize our compound of interest’s 3D chemical 
structures since GAFF provided a correlated prediction 
to experimental data [46]. Finally, Open Babel was used 
to prepare a proper format for docking simulation.

Beta-lactamase preparation
Beta-lactamase (PDB ID: 6F2N) [47] was downloaded 
from the RCSB PDB database and was used as a target 
enzyme for molecular docking since it was obtained 
from B. cereus. The same bacterial species produced 
beta-lactamase we used in our in vitro experiment. A 
native ligand that came with the protein crystal structure 
was used as a docking validation to ensure the reliabil-
ity of the established docking protocols for AD Vina and 
DOCK6 before performing virtual screening.

Docking preparation and analysis
The Chimera program (version 1.17.3) [48] was utilized 
to prepare the beta-lactamase structure and necessary 
files for docking simulation for AD Vina [14] and DOCK6 
[15] programs. The native ligand was used to navigate a 
catalytic domain, which was also set as a binding site for 
docking.

For AD Vina, the binding site was set as an x, y, and 
z coordination of 12.95 × 14.01 × 43.04 with a size of 15 

https://pharmbio-fau-erlangen.github.io/FARM-BIOMOL/
https://pharmbio-fau-erlangen.github.io/FARM-BIOMOL/
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cubic Å. We use a default value of nearly all AD Vina 
docking parameters, except exhaustiveness and number 
of docking poses. Exhaustiveness was adjusted to 128, 
and the number of docking poses was increased to 20. 
However, only the top 10 AD Vina predictive poses were 
used to calculate an average docking score. Finally, we 
selected AD Vina version 1.2.5 [14] to perform docking 
simulation.

For DOCK6, the author followed the user manual guide 
to set up the docking environment and used the sphgen_
cpp package to generate the binding site. We used a fixed 
anchor docking option with a grid search parameter (a 
default scoring function). Later, we rescored DOCK6’s 
initial result using a descriptor scoring function.

Before performing virtual docking screening, all estab-
lished docking protocols were validated by redocking the 
native ligand back into its original position. After passing 
the docking protocol validation, the result must be less 
than 3 Å than its original position [49]. Finally, for con-
sensus docking, we identified overlapped active results 
from both docking through simple Linux commands 
(grep and diff).

Classification ML models establishment and models 
evaluation
Data preparation
The physicochemical properties of chemicals listed in 
our’ library were generated via PaDEL software [50]. The 
software generated 1,875 descriptors in total. After data 
cleaning (removing constant value and quasi-constant 
feature, data with a low variance of less than 1%), only 
896 descriptors remained. Furthermore, a binary consen-
sus docking value was added as an additional descriptor. 
Then, the data was split into training and testing sets in a 
ratio of 3:1.

Imbalance ration estimation.
The imbalance ratio reported by Megahed et al. was 

used to evaluate the dataset’s balance [23]. The equa-
tion is provided below. A value of 1 indicates a balanced 
dataset and a higher value indicates a higher degree of 
imbalance.

	
Imbalance ratio = Number of negative samples

Number of positive samples

RF and LR models establishment
We ran the Scikit-learn package [51] on Jupiter Note-
book [52] to create RF and LR classification models. Ini-
tially, both models were established based on the default 
parameters. Except for the random number, the number 
was varied from 1 to 30 to generate 30 models for each 
ML. Later, in the hyperparameter tuning step, we applied 
the GridSearchCV approach, and grid parameters were 
set separately for each model. For the RF model, the grid 

parameters were set as bootstrap: True or False, max_
depth: 10,30, 50, 70, 90, 100, 200, max_features; sqrt or 
log2, min_sample_leaf: 1, 2, 4, min_sample_split: 2, 5, 
10, n_estimators: 50, 100, 200, 500, and criterion: gini or 
entropy. For the LR model, the grid parameters were set 
as solver: liblinear, sag or saga, penalty: l1 or l2, and C: 1, 
10, 100, and 1000. Finally, we used fourfold cross-valida-
tion to assess the performance of both models.

Model evaluation
We evaluated the model using an accuracy, confusion 
matrix, and ROC graph. Each evaluation parameter was 
calculated using the Scikit-learn package [51] running on 
the Jupiter Notebook [52].
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