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Abstract 

PI3K-α mutation plays a critical role in cancer development, notably in breast cancer, particularly within HR + /
HER2- subtypes. These mutations drive tumor growth and survival by activating the PI3K/AKT/mTOR pathway, which 
is essential for cell proliferation and survival. Our research aimed to identify natural compounds that can inhibit 
mutant and specific isoforms of PI3K-α to prevent tumor progression. e-Pharmacophore model was generated using 
Receptor-Ligand complex using the Inavolisib drug (PDB:8EXV) and phase screening was performed using the Mol-
port database of natural compounds. Through molecular docking studies we identified seven promising compounds 
for further molecular dynamics simulations. Among these, three compounds—STOCK1N-85097, STOCK1N-85998, 
and STOCK1N-86060—showed significant stability and interaction with PI3K-α. These compounds demonstrated 
favorable results in several parameters, including RMSD, RMSF, Rg, SASA, PCA, FEL, and total energy evaluations. There-
fore, these compounds are projected to function as PI3K-α inhibitors and because of its natural origin it can possess 
fewer side effects than the conventional medicine, which should be validated by proper in vivo and in vitro models.
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Graphical Abstract

Introduction
Breast cancer is identified by the formation of tumors 
resulting from uncontrolled growth of abnormal cells 
within the breast and it is the 2nd most common cancer 
worldwide. If untreated, these tumors can spread and 
become fatal. The disease begins in milk ducts or lobules 
and can be in  situ or invasive, causing lumps. Invasive 
cases can metastasize to lymph nodes or organs, posing a 
fatal risk. Treatment depends on factors like cancer type, 
combining surgery, radiation, and medications. In 2022, 
there were approximately 666,103 death and nearly 2.3 
million women were diagnosed with breast cancer with 
age-standardized rates per 100,000 of 46.8 [1]. This can-
cer type is the most prevalent, predominantly affecting 
individuals after puberty and in the later stages of life. 
About 29% of breast cancers and roughly 40% of hor-
mone receptor positive/human epidermal receptor 2 
negative (HR + /HER2-) metastatic breast cancers exhibit 
abnormal Phosphatidylinositol 3-kinase catalytic 110-KD 
alpha (PI3K-α) signaling [2].

PI3K-α belongs to Phosphatidylinositol-3 kinase 
(PI3K) class of lipid kinases. PI3Ks constitute a class of 
enzymes crucial in cell signaling and controlling diverse 
cellular functions such as growth, proliferation, survival, 
and metabolism. PI3Kα is activated through the release 
of autoinhibition exerted by the nSH2 domain of the 
p85α regulatory subunit, which triggers conformational 

changes in the p110α catalytic subunit. PI3K-α works 
by catalyzing the phosphorylation of Phosphatidylino-
sitol 4,5-bisphosphate (PIP2) to phosphatidylinositol 
3,4,5-trisphosphate (PIP3). These generated PIP3 acti-
vates the downstream signaling pathway, resulting in 
cell proliferation, growth, and survival. One of the pro-
teins activated by PIP3 is AKT, which leads toward vari-
ous cellular processes associated with cancer progression 
when a disruption or mutation leads to overexpression 
of PI3K-α which in turn leads to the production of more 
PIP3 production, resulting in aberrant cellular signal-
ing that promotes the growth of tumors. PI3KCA gene 
codes for PI3K-α. Around 80% of tumors with mutant 
PIK3CA possess somatic mutations in the region E545K 
or H1047R of p110α. Given its crucial role in cancer 
development, PI3K-α has emerged as a key target for 
pharmacological efforts in oncology. The goal is to inhibit 
its function through medication intervention, limiting 
cancer growth and enhancing the efficacy of treatments. 
Consequently, there’s considerable focus on molecules 
that act as PI3K-α inhibitors for cancer treatment, with 
numerous inhibitors progressing to clinical trials [3–7]. 
For a drug to be an isoform and mutant-specific inhibitor 
of PI3K-α, it should recognize and bind with amino acid 
residue GLU859 and preferably recognize and bind with 
other non-conserved amino acid residues like ARG852, 
ASN853, SER854, and HIS855 [8–10].
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Natural products have exhibited promising potential as 
compounds for the treatment of cancer, with the capabil-
ity of displaying activity against prostate cancer [11], lung 
cancer [12], and breast cancer [13]. The benefits offered 
by these compounds include fewer side effects and the 
ability to target multiple pathways involved in cancer 
progression [14]. The exploration of natural compounds 
has led to the identification of bioactive molecules capa-
ble of specifically targeting cancer cells and disrupting 
cell signaling pathways [15]. Further investigation and 
systematic approaches are essential to comprehensively 
evaluate the therapeutic potential of natural products in 
cancer treatment.

Computational techniques such as Molecular docking 
play a crucial role in pharmaceutical research by predict-
ing how potential drug molecules interact with target 
proteins. This technology enables rapid and cost-effective 
virtual testing of thousands to millions of compounds. 
Through precise predictions of how small molecules 
bind and their affinity for protein binding sites, molecu-
lar docking assists in developing and identifying new 
drugs [16]. Several studies have employed computational 
techniques to identify potential compounds that act as 
selective cyclin-dependent kinase 2 inhibitor for treat-
ing cancer [17], DprE1 inhibitors for tuberculosis treat-
ment [18], and γ-aminobutyric acid receptor antagonist 
[19]. Hence, in this research, computational techniques 
like e-pharmacophore modeling, ligand docking, and 
molecular dynamic simulation studies are being utilized 
to identify natural products as isoform and mutation-
specific inhibitors of PI3K-α.

Methods
The graphical user interface (GUI) of Schrödinger 2024–
2, Maestro version 14 was used for all computational 
calculations and analyses such as the Phase module 
"Develop hypothesis model" and "Hypothesis validation" 
was used for developing Pharmacophore hypothesis and 
Validation, the Glide module "Ligand docking" was used 
for Molecular docking, the Prime module "MM-GBSA" 
was used for MM-GBSA calculation, the task pane 
Receptor-based virtual screening "Induced fit docking" 
for Induced fit docking studies. "QikProp" for ADME 
analysis and "Desmond" for Molecular dynamic simu-
lation studies. Additionally, Geo-Measures: A PyMOL 
plugin was used for principal component analysis (PCA), 
Free energy landscape (FEL) and Radius of gyration [20].

Protein preparation, grid generation and Ligand 
preparation
The Protein Data Bank (PDB) served as the source 
for downloading the PI3K-α protein structure, which 
houses numerous experimentally determined protein 

structures. However, indiscriminate utilization of all 
available models can yield unreliable results and inter-
pretations due to varying model quality. Hence, strin-
gent criteria were employed in selecting an appropriate 
protein crystal structure like a high-resolution struc-
ture was required to ensure accurate representation, 
completeness of the active site and side chains to pre-
vent inaccurate binding interaction analysis, the pres-
ence of a co-crystallized ligand for precise delineation 
of the active site’s location. Additionally, the chosen 
PDB’s root mean square deviation (RMSD) had to be 
minimal to confirm the structural stability and accuracy 
of the protein. The selected protein is downloaded and 
prepared using the Schrödinger suite module "Protein 
Preparation Workflow". The process involves import-
ing, preprocessing, optimize H-bond assignment, mini-
mize, and delete water. OPLS4 (Optimized potential 
for liquid stimulation) force field was used for mini-
mization of energy and to generate protein low energy 
state. water molecules beyond 5  Å were deleted, and 
the heteroatoms stage was generated. The "Receptor 
grid generation" panel used to build a grid surrounding 
the ligand at coordinates X (– 17.25), Y (13.63), and Z 
(29.42) while preserving all functional residues inside 
the grid in the default configuration [21–23].

The Molport database for Natural products was 
selected for the docking studies. The database consists of 
113,699 molecules. The LigPrep tool of the Schrödinger 
suite was used to prepare molecules for docking. The 
molecules was prepared in OPLS4 forcefield with ioniza-
tion kept at pH 7.4 ± 0.0 using Epik and only 1 stereoiso-
mers were generated while keeping rest of the setting in 
default [21–23].

e‑pharmacophore based screening
Generation of e‑pharmacophore model
For the development of e-pharmacophore model, the 
phase module "Develop hypothesis model" was used for 
generating the hypothesis where pharmacophore model 
was created using the “Receptor-ligand complex” with 
Auto (E-Pharmacophore) Method keeping 7 as Maxi-
mum number of features, 2 Å as Minimum feature-fea-
ture distance and 4 Å keeping Minimum feature-feature 
distance for feature of the same type I the feature section 
of the hypothesis settings. In the Excluded Volumes sec-
tion, Create receptor-based excluded volume shell was 
ticked with Radii size selected as Van der Waals radii 
of receptor atoms, Radii scaling factors was selected 
at Fixed scaling factor of 0.50, the surfaces of receptor 
atoms were ignored which are within 2  Å of the ligand 
surface and 5 Å is kept as limit for excluded volume shell 
thickness.
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e‑pharmacophore model validation
The generated pharmacophore model quality was 
assessed using Test set validation and Güner-Henry (GH) 
scoring method [24]. Drug-Like Ligand Decoys Set from 
Schrödinger website (https:// www. schro dinger. com/ 
produ cts/ glide# block- 2294) was downloaded. 15 mol-
ecules with reported activity on PI3K-α with Ki value in 
the range of 0.026–0.681  nM were identified from lit-
erature search and used as active set (Supplementary 
file Table  S1). These sets of active and decoy were used 
for hypothesis validation. The Schrödinger suite’s Phase 
module "Hypothesis validation" was used for validating 
the hypothesis.

Phase screening
The e-Pharmacophore model selected after validation 
was used for screening Molport natural product data-
base. A well validated model helps in the identification 
of molecules with similar pharmacophoric properties 
organized in similar relative orientations. Molecules that 
best fit the query and are returned as hits. The Phase 
module’s "Ligand and Database screening" was used for 
phase screening using the Molport database for Natural 
product with Hypothesis matching 6 out of 7 features of 
the generated e-Pharmacophore model.

Molecular docking and free ligand binding energy 
(MM‑GBSA)
The Schrödinger suite GLIDE module “Ligand Docking” 
was used for molecular docking studies. Ligands which 
passed through Phase Screening process were used in 
the study. Firstly, the prepared receptor grid was selected, 
the prepared ligand was selected in the Ligand tab while 
keeping the scaling factor as 0.80 with partial charge cut-
off at 0.15 for van der Waals radii and also ligands hav-
ing more than 500 atoms, and 100 rotatable bonds was 
not docked or scored. In the Settings section, Precision 
was selected initially as High throughput virtual screen-
ing (HTVS) followed by Standard precision (SP) mode, 
top 10 percent of the hit was again docked using Extra 
precision (XP) mode, this process helps in avoid false 
positive results with Ligand sampling kept as flexible. The 
Constraints section is kept on default. In the Output sec-
tion, settings was kept in default with post-docking mini-
mization and compute RMSD to input ligand geometries 
selected [21–23].

Generalized Born and surface area solvation (MM-
GBSA) is used for calculating the absolute binding affini-
ties of ligand–protein complex by estimating binding-free 
energy. The Prime module’s MM-GBSA panel was used 
for calculating the MM-GBSA keeping the settings in 
default [25].

The Formula for MM-GBSA calculation in given below:

where, ΔG(SA) is difference of the PI3K-α-Inhibitor com-
plex’s surface energies and the sum of unbounded PI3K-α 
protein and inhibitor surface area energies. ΔE(MM) is 
difference of the PI3K-α-Inhibitor complex’s minimized 
energies and the sum of unbounded PI3K-α protein and 
inhibitor energies. ΔG(solvation) difference of the PI3K-
α-Inhibitor complex’s solvation energies and the sum 
of unbounded PI3K-α protein and inhibitor solvation 
energies.

ADMET predictions
The top hits based on MM-GBSA,  docking score and 
interaction, were selected for further analysis. The Qik-
Prop tool of the Schrödinger suite was used for pre-
dicting ADME parameters such as QPlogS (predicted 
aqueous solubility), QPlogBB (Predicted brain/blood par-
tition coefficient), QPlogKhsa (prediction of binding to 
human serum albumin), QPlogPo/w (predicted octanol/
water coefficient). Bioavailability and drug-likeness using 
Lipinski’s rule of five by using SwissADME (http:// www. 
swiss adme. ch/) [26]. "admetSAR" was used for toxicity 
profiling [27].

Induced fit docking (IFD)
On the basis of XP docking score & interaction formed, 
MM-GBSA and ADMET prediction, leads will be 
selected for IFD. IFD considers the flexibility of both the 
receptor and the ligand during docking. It explains the 
dynamic changes in the receptor’s structure that occur 
when a ligand binds to it. It enhances the accuracy of pre-
dicting binding interactions by allowing the receptor to 
change its binding location to better match the ligand. 
By considering the dynamic nature of protein–ligand 
interactions, this technique improves the success rate of 
structure-based drug design.

The Extra precision-Induced Fit docking module of the 
Schrödinger suite was used for this assessment. A total of 
20 different poses were generated and the rest of the set-
ting was kept in default [28–30].

Molecular dynamic simulations (MDS)
Molecular dynamic simulation (MDS) studies were 
employed for examining the functioning and the dynam-
ics of ligand–protein complexes. Molecular docking and 
IFD studies don’t mimic the body biological environ-
ment as the protein and ligands were suspended in water, 
therefore MDS is used for addressing this concern. Mol-
ecules showing good bond retention and IFD docking 
score were selected for undergoing MDS for a duration 
of 100 ns. The MDS process involves Desmond’s System 
builder module where the protein–ligand complex was 

�G(binding) = �E(MM) + �G(SA) + �G(solvation)

https://www.schrodinger.com/products/glide#block-2294
https://www.schrodinger.com/products/glide#block-2294
http://www.swissadme.ch/
http://www.swissadme.ch/
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immersed into a simple point charge (SPC) solvent model 
and  Na+ used as counterion. The boundary condition was 
kept as orthorhombic form and the buffer box size was 
calculated using Buffer method with dimensions set at a, 
b, & c at 10  Å and angles α, β & γ at 90°. OPLS4 force 
field was used, and Minimization tool was used for sys-
tem minimization. Molecular Dynamics module of Des-
mond was selected for MDS, where simulation time was 
set at 100  ns, with trajectory recording interval at 100 
picoseconds with 1000 frames. Ensemble class was set 
at NPT (constant particle number, pressure 1.01325 bar, 
and temperature 300  K). In the integration tab, RESPA 
integrator setting was kept at Time step (fs) bonded 
at 2 with near and far steps at 2 and 6. In the Ensemble 
tab, Thermostat method was set to Nose–Hoover chain 
with relaxation time of 1 picosecond and 1 as number of 
groups. The Martyna-Tobias-Klein, Barostat method was 
used with relaxation time of 2 picoseconds and isotropic 
as coupling style. The Coulombic cutoff radius was set 
at 9  Å with no position restraints were set, and Seed is 
kept at Random [31–33]. The force field used was OPLS4. 
Finally, the report was generated using Simulation Inter-
action Diagram tool. Post MDS studies including Root 
mean square deviation (RMSD), Root mean square fluc-
tuation (RMSF), Solvent accessible surface area (SASA), 
Radius of gyration (Rg) Principal component analysis 
(PCA), Free energy landscape (FEL), Hydrogen bond 
analysis, Thermal Binding free energy (MM-GBSA dG 
bind) and Total energy were also assessed.

Result and discussion
Hypothesis generation, validation and phase screening
For generate the hypothesis, we identified 72 PDB 
entries of PI3K-α in complex with a co-crystallized 
ligand. Based on the selection criteria outlined in the 
methods section, PDB ID 8EXV was chosen. This entry 
was selected due to its low RMSD of 0.1557 Å, a high 
X-ray crystallographic resolution of 2.48  Å, and the 
presence of the co-crystallized ligand Inavolisib in the 
active site. Additionally, the co-crystallized ligand Ina-
volisib (X3N) showed an IC50 value of 0.038 nmol and 
is also under clinical trial Phase-3 for clinical indication 
of HR + , HER2-negative, PIK3CA mutated mBC post 
CDK4/6i therapy [34]. Its mechanism of action involves 
binding to the ATP binding site of PI3K by making 
Hydrogen bonding with TYR836, VAL851, GLN859 
and ASP933 amino acid residues and π-π stacking with 
TRP780 and TYR836 amino acid residues, thereby 
effectively inhibiting the phosphorylation process that 
converts PIP2 to PIP3. Importantly, Inavolisib dem-
onstrates greater selectivity for mutant PI3Kα than 
the wild-type form [35]. PDB-8EXV complexed with 

Inavolisib was used for generating the Ligand-Recep-
tor complex e-pharmacophore model. The presence of 
pharmacophoric features such as hydrogen acceptors, 
hydrophobic regions, hydrogen donors, and aromatic 
rings is beneficial because these elements contrib-
ute to stronger and more specific binding interactions 
between the ligand and the target protein. Hydrogen 
acceptors and donors help form stable hydrogen bonds, 
hydrophobic regions enhance the fit within nonpo-
lar pockets, and aromatic rings can participate in π-π 
stacking and hydrophobic interactions, all of which 
improve the ligand’s affinity and specificity for its tar-
get. The model generated contains 7 pharmacophoric 
features including two hydrogen acceptor regions (A4 
& A5), two hydrophobic regions (H11 & H12), one 
donor (D7) and two aromatic rings (R13 & R14) (Fig. 1).

Now, the e-Pharmacophore model was then validated 
by assessing its capability to recognize active molecules 
from the dataset containing a set of actives and decoys. 
The pharmacophore model’s validation was carried 
out using Güner–Henry (GH) and Enrichment Fac-
tor (EF) metrics to assess its capability in distinguish-
ing between active and inactive compounds. The GH 
method, or Goodness of Hit list, combines two met-
rics: the percentage of active compounds identified and 
the proportion of actives in the hit list. The EF meas-
ures how much the hit list is enriched compared to the 
overall database. For this validation, a decoy dataset 
consisting of 1000 inactive compounds and 15 active 
compounds was created. The generated model was able 
to identify 100% of the actives and assumed 6 decoys as 
actives from 1000 decoys. It shows a Goodness of hit 
(GH) score of 0.78, whereas effective pharmacophore 
model is expected to have a GH score greater than 0.60 
[36]. The Enrichment factor (EF) score of 48.33 gives an 
idea about the number of times the model was able to 
identify actives in the set of decoys, i.e., it can screen 
actives 48.33 times more than the decoys. Additional 
validation metrics, including the percentage of active 
compounds, false positives, and false negatives, are 
detailed in Table 1. The result indicates that the gener-
ated model can be used for phase screening.

Phase screening using the validated e-Pharmacophore 
model was done using the Molport database for Natu-
ral products which contain 113,669 molecules. Ligands 
were prepared as mentioned in the Ligand preparation 
section. In the Ligand and Database screening module, 
the validated hypothesis was selected in the hypothe-
sis section, Matches was selected at 6 of 7 while keep-
ing the screening settings at default. A total of 5600 
hits was found in the initial screening which has 6 of 7 
pharmacophoric features similar to Inavolisib. The hit 
was compiled and used for Molecular docking studies.
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Molecular docking studies, MM‑GBSA, ADMET and induced 
fit docking (IFD)
The 5600 hits obtained after Phase screening was docked 
with the protein structure of PI3K-α (PDB-8EXV). Firstly, 
HTVS docking mode was used for identifying interac-
tions and docking scores. Which was followed by SP-
docking mode, where the top 10 percent of the hits after 
HTVS docking mode was selected. Based on the SP-
docking score and interaction, the top 10 percent of the 
ligands were again selected for XP docking mode. Based 
on XP docking mode score, interaction with protein and 
MM-GBSA, 25 molecules namely STOCK1N-113116, 
STOCK1N-81073, STOCK1N-51145, STOCK1N-59405, 
STOCK1N-84648, STOCK1N-46158, STOCK1N-85097, 
STOCK1N-84443, STOCK1N-64228, STOCK1N-84098, 
STOCK1N-85873, STOCK1N-92951, STOCK1N-92949, 
STOCK1N-40367, STOCK1N-85433, STOCK1N-1935, 
STOCK1N-81980, STOCK1N-85851, STOCK1N-84154, 
STOCK1N-85998, STOCK1N-86351, STOCK1N-88743, 
STOCK1N-42002, STOCK1N-86060 and 
STOCK1N-83010 having docking score in the range of 

Fig. 1 A Protein structure with Ligand bound at active site. B e-Pharmacophore model C Inter-site distances (Å) between the pharmacophoric 
points of model. Pink Color is Hydrogen bond acceptor (A); Green color represents Hydrophobic atom (H); Blue Color represents Hydrogen bond 
donor (D); Yellow color represents Aromatic ring (R)

Table 1 Validation parameters of the e-Pharmacophore model

Parameter e‑Pharmacophore 
model

Total compounds in the database (D) 1015

Number of actives in the database (A) 15

Number of hits  (Ht) 21

Number of actives in the hit list  (HA) 15

Percentage Yield of actives (Ya %) = (HA/  Ht) × 100 71.43%

Percentage Ratio of actives =  (HA/A) × 100 100%

Enrichment factor (EF) =  (HA x D)/(  Ht x A) 48.33

True Positive (TP) 15

True Negative (TN) = D—Ht 994

False Negatives (FN) = A—HA 0

False Positives (FP) =  Ht –  HA 6

Sensitivity (Se) = TP/(TP + FN) 1

Specificity (Sp) = TN/(TN + FP) 0.99

Goodness of hit (GH) score = [(3/4 × Ya) + (1/4 × Se
)] x Sp

0.78



Page 7 of 24Mili et al. BMC Chemistry          (2024) 18:241  

Table 2 Docking score, MMGBSA and interaction with protein of the 25 selected hits and the Co-crystalized Ligand

Compound ID Structure MM‑GBSA 
(kcal/mol)

Docking 
score (kcal/
mol)

Interaction with protein

Inavolisib − 102.74 − 13.007 H‑bond: TYR836, VAL851, GLN859 & ASP933
π‑π stacking: TRP780 & TYR836

STOCK1N-113116 − 72.85 − 16.683 H‑bond: ARG770, SER774, ASP810, TYR836, VAL851, SER854, 
GLN859, SER919 & ASP933

STOCK1N-81073 − 53.4 − 14.446 H‑bond: SER774, LYS802, ASP810, TYR836 & ASP933

STOCK1N-51145 − 57.47 − 13.683 H‑bond: VAL851, GLN859, SER919 & ASP933

STOCK1N-59405 − 60.74 − 13.614 H‑bond: ARG770, TRP780, GLU798, VAL851, ASN853, SER854, 
GLN859 & ASP933
Salt bridge: ARG770
π‑π stacking: TRP780 & TYR836

STOCK1N-84648 − 65.78 − 13.536 H‑bond: ALA775, LYS802, VAL851, SER854 & ASP933
π‑π stacking: TRP780 & TYP836

STOCK1N-46158 − 37.92 − 13.513 H‑bond: VAL851 & ASP933
Salt bridge: ASP805 & ASP933
π‑π stacking: TYR836
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Table 2 (continued)

Compound ID Structure MM‑GBSA 
(kcal/mol)

Docking 
score (kcal/
mol)

Interaction with protein

STOCK1N-85097 − 53.02 − 13.458 H‑bond: SER774, LYS802, VAL851 & SER854
π‑π stacking: TRP780 & TYR836

STOCK1N-84443 − 48.34 − 13.32 H‑bond: SER774, LYS802, GLU849, VAL851, SER854 & GLN859
π‑π stacking: TRP780 & TYR836

STOCK1N-64228 − 55.47 − 13.183 H‑bond: ARG770, VAL851, ASN853, GLN859 & LYS802
π‑π stacking: TRP780

STOCK1N-84098 − 59.56 − 12.857 H‑bond: SER773, SER774 & VAL851
Salt bridge: ARG770
π‑cation stacking: ARG770

STOCK1N-85873 − 55.74 − 12.773 H‑bond: ALA775, LYS802, VAL851, SER854 & GLN859
π‑π stacking: TRP780 & TYR836

STOCK1N-92951 − 54.55 − 12.667 H‑bond: ALA775, LYS802, VAL851 & SER919

STOCK1N-92949 − 65.7 − 12.641 H‑bond: LYS802, VAL851, ASN853, HIS855, GLN859 & ASP933

STOCK1N-40367 − 58.95 − 12.596 H‑bond: ARG770, VAL851, ASN853, SER854 & GLN859
Salt bridge: ARG770
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Table 2 (continued)

Compound ID Structure MM‑GBSA 
(kcal/mol)

Docking 
score (kcal/
mol)

Interaction with protein

STOCK1N-85433 − 58.48 − 12.371 H‑bond: LYS802, TYR836, VAL851 & SER854
π‑π stacking: TRP780

STOCK1N-1935 − 48.91 − 12.348 H‑bond: GLU849 & VAL851
π‑π stacking: TRP780 & TYR836

STOCK1N-81980 − 46.92 –12.337 H‑bond: GLU849, VAL851 & ASP933
π‑π stacking: TYR836

STOCK1N-85851 − 41.61 − 12.292 H‑bond: SER774
π‑π stacking: TYR836
Salt bridge: ARG770

STOCK1N-84154 − 56.81 − 12.289 H‑bond: LYS802, VAL851 & SER854
π‑π stacking: TRP780 & TYR836

STOCK1N-85998 − 59.22 − 12.273 H‑bond: LYS802, VAL851, SER854 & GLN859
π‑π stacking: TRP780 & TYR836

STOCK1N-86351 − 53.71 − 12.241 H‑bond: VAL851, SER854 & LYS802
π‑π stacking: TRP780 & TYR836
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−  12.144 to −  16.683  kcal/mol  was selected for futher 
screening (Table 2).

The Inavolisib form Hydrogen bond with TYR836, 
VAL851, GLN859 & ASP933 and π-π stacking with 
TRP780 & TYR836 amino acid residue of PI3K-α pro-
tein. The hit STOCK1N-113116 form Hydrogen bonds 
with ARG770, SER774, ASP810, TYR836, VAL851, 
SER854, GLN859, SER919 & ASP933 amino acid resi-
due of PI3K-α protein. The hit STOCK1N-81073 
form Hydrogen bond with SER774, LYS802, ASP810, 
TYR836 & ASP933 amino acid residue of PI3K-α pro-
tein. The hit STOCK1N-51145 form Hydrogen bond 
with VAL851, GLN859, SER919 & ASP933 amino acid 
residue of PI3K-α protein. The hit STOCK1N-59405 
forms Hydrogen bond with ARG770, TRP780, GLU798, 
VAL851, ASN853, SER854, GLN859 & ASP933, Salt 
bridge with ARG770 and π-π stacking with TRP780 & 
TYR836 amino acid residue of PI3K-α protein. The hit 
STOCK1N-84648 form Hydrogen bond with ALA775, 
LYS802, VAL851, SER854 & ASP933 and π-π stacking 
TRP780 & TYP836 amino acid residue of PI3K-α pro-
tein. The hit STOCK1N-46158 form Hydrogen bond with 

VAL851 & ASP933, Salt bridge with ASP805 & ASP933 
and π-π stacking with TYR836 amino acid residue of 
PI3K-α protein. The hit STOCK1N-85097 form hydrogen 
bond with SER774, LYS802, VAL851 & SER854 and π-π 
stacking with TRP780 & TYR836 amino acid residue of 
PI3K-α protein. The hit STOCK1N-84443 form hydrogen 
bond with SER774, LYS802, GLU849, VAL851, SER854 & 
GLN859 and π-π stacking with TRP780 & TYR836 amino 
acid residue of PI3K-α protein. The hit STOCK1N-64228 
forms Hydrogen bond with ARG770, VAL851, ASN853, 
GLN859 & LYS802 and π-π stacking with TRP780 amino 
acid residue of PI3K-α protein. The hit STOCK1N-84098 
forms Hydrogen bond with SER773, SER774 & VAL851, 
Salt bridge with ARG770 and π-cation stacking with 
ARG770 amino acid residue of PI3K-α protein. The hit 
STOCK1N-85873 forms Hydrogen bond with ALA775, 
LYS802, VAL851, SER854 & GLN859 and π-π stacking 
with TRP780 & TYR836 amino acid residue of PI3K-α 
protein. The hit STOCK1N-92951 form Hydrogen bond 
with ALA775, LYS802, VAL851 & SER919 amino acid 
residue of PI3K-α protein. The hit STOCK1N-92949 form 
Hydrogen bond with LYS802, VAL851, ASN853, HIS855, 

Table 2 (continued)

Compound ID Structure MM‑GBSA 
(kcal/mol)

Docking 
score (kcal/
mol)

Interaction with protein

STOCK1N-88743 − 72.47 − 12.183 H‑bond: VAL851, GLN859 & SER919
π‑π stacking: TRP780 & TYR836

STOCK1N-42002 − 50.58 − 12.166 H‑bond: ALA775, VAL851 & ASP933
π‑π stacking: TYR836

STOCK1N-86060 − 58.79 − 12.152 H‑bond: LYS802, VAL851, SER854 & GLN859
π‑π stacking: TRP780 & TYR836

STOCK1N-83010 − 67.11 − 12.144 H‑bond: ALA775, GLU849, ASN853, SER854, GLN859 & ASP933
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GLN859 & ASP933 amino acid residue of PI3K-α pro-
tein. The hit STOCK1N-40367 form Hydrogen bond 
with ARG770, VAL851, ASN853, SER854 & GLN859, 
and Salt bridge with ARG770 amino acid residue of 
PI3K-α protein. The hit STOCK1N-85433 form Hydro-
gen bond with LYS802, TYR836, VAL851 & SER854 and 
π-π stacking with TRP780 amino acid residue of PI3K-α 
protein. The hit STOCK1N-1935 form Hydrogen bond 
with GLU849 & VAL851, and π-π stacking with TRP780 
& TYR836 amino acid residue of PI3K-α protein. The hit 
STOCK1N-81980 form Hydrogen bond with GLU849, 
VAL851 & ASP933, and π-π stacking with TYR836 amino 
acid residue of PI3K-α protein. The hit STOCK1N-85851 
form Hydrogen bond with SER774, π-π stacking with 
TYR836, and Salt bridge with ARG770 amino acid resi-
due of PI3K-α protein. The hit STOCK1N-84154 form 
H-bond with LYS802, VAL851 & SER854, and π-π 
stacking with TRP780 & TYR836 amino acid residue of 
PI3K-α protein. The hit STOCK1N-85998 form Hydro-
gen bond with LYS802, VAL851, SER854 & GLN859, and 
π-π stacking with TRP780 & TYR836 amino acid residue 
of PI3K-α protein. The hit STOCK1N-86351 for Hydro-
gen bond with VAL851, SER854 & LYS802, and π-π 
stacking with TRP780 & TYR836 amino acid residue of 
PI3K-α protein. The hit STOCK1N-88743 form Hydro-
gen bond with VAL851, GLN859 & SER919, and π-π 
stacking with TRP780 & TYR836 amino acid residue of 
PI3K-α protein. The hit STOCK1N-42002 form Hydro-
gen bond with ALA775, VAL851 & ASP933, and π-π 
stacking with TYR836 amino acid residue of PI3K-α pro-
tein. The hit STOCK1N-86060 form Hydrogen bond with 
LYS802, VAL851, SER854 & GLN859, and π-π stacking 
with TRP780 & TYR836 amino acid residue of PI3K-α 
protein. The hit STOCK1N-83010 form Hydrogen bond 
with ALA775, GLU849, ASN853, SER854, GLN859 & 
ASP933 amino acid residue of PI3K-α protein. It has been 
observed that most of the compound shows interactions 
with the amino acid residues (TYR836, VAL851, GLN859 
& ASP933, TRP780 and TYR836) of PI3K-α similar to the 
Inavolisib (co-crystalized ligand). The 2D interaction dia-
gram is shown in Supplementary file Table S2.

The MM-GBSA value is in the range of the 25 mol-
ecules are in the range of −  37.92 to −  72.85  kcal/mol 
(Table 2), greater the negative value greater is the stability 
of the docked compound in the protein–ligand complex.

During the process of drug design, the criteria of drug-
like properties and ADMET properties are of utmost 
importance. Drug-like properties was measured using 
Lipinski rule filter (Molecular weight (MW) < 500  Da, 
Number of hydrogen bond acceptors < 10, Number of 
hydrogen bond donors < 5, Calculated n-octanol–water 
partition coefficient (Clog P) < 5) where we observed 
that more than 5 compounds (STOCK1N-113116, 

STOCK1N-81073, STOCK1N-59405, STOCK1N-64228, 
STOCK1N-83010) has shown a violation of more 
than 3 factors, four compounds (STOCK1N-84648, 
STOCK1N-92951, STOCK1N-92949, STOCK1N-86060) 
has shown a violation of 2 factors and sixteen compounds 
(STOCK1N-51145, STOCK1N-46158, STOCK1N-85097, 
STOCK1N-84443, STOCK1N-84098, STOCK1N-85873, 
STOCK1N-40367, STOCK1N-85433, STOCK1N-1935, 
STOCK1N-81980, STOCK1N-85851, STOCK1N-84154, 
STOCK1N-85998, STOCK1N-86351, STOCK1N-88743, 
STOCK1N-42002) have shown a violation of 0 or 1 
(Table 3).

One of the crucial factors is the oral absorption per-
centage of the compounds, it was observed that six-
teen compounds (STOCK1N-51145, STOCK1N-46158, 
STOCK1N-85097, STOCK1N-84443, STOCK1N-85873, 
STOCK1N-85433, STOCK1N-1935, STOCK1N-81980, 
STOCK1N-84154, STOCK1N-85998, STOCK1N-86351, 
STOCK1N-88743, STOCK1N-42002, & STOCK1N-86060) 
shows >50 percent oral obsorption with three compounds, 
STOCK1N-84648, STOCK1N-92951, & STOCK1N-85851 
shows absorption of 25, 27 and 49% oral absorption, 
respectively while six compounds (STOCK1N-113116, 
STOCK1N-81073, STOCK1N-59405, STOCK1N-64228, 
STOCK1N-92949, & STOCK1N-83010) shows 0 or 1 per-
cent oral absorption. Fourteen compounds show Bioavail-
ability of more than 50% while eleven compounds namely 
STOCK1N-113116, STOCK1N-81073, STOCK1N-59405, 
STOCK1N-84648, STOCK1N-64228, STOCK1N-92951, 
STOCK1N-92949, STOCK1N-40367, STOCK1N-85851, 
STOCK1N-86060, & STOCK1N-83010 show less than 
20% bioavailability. Additional properties, namely H-bond 
donor or acceptor and QPlogPo/w, should fall within the 
specific range of 0.0 to 6.0, 2.0 to 20.0 and −  2.0 to 6.5, 
respectively. Furthermore, the predicted pharmacokinetic 
parameters such as QPlogS of all the compounds were in 
the range of − 6.28 to − 2.08 which is well within the rec-
ommended range of −  6.5 to 0.05. The QPlogKhsa values 
of the 24 compounds ranged from – 1.2 to 1.1 and with 
compound STOCK1N-113116 get a score of – 1.8 which 
falls beyond the recommended range of −  1.5 to 1.5. The 
normal range of QPlogBB is from − 3.0 to 1.2, and all the 
compounds were found to be within the range of − 2.2 to 
− 0.2. The predicted toxicity profiles indicate that all com-
pounds exhibit a medium risk of acute oral toxicity. With 
the exception of STOCK1N-1935, all other compounds 
show minimal risk of crossing the blood–brain barrier. 
Four compounds—STOCK1N-46158, STOCK1N-1935, 
STOCK1N-85851, and STOCK1N-42002—are asso-
ciated with a high risk of hepatotoxicity, whereas the 
remaining compounds demonstrate a lower risk in this 
regard. Twelve compounds, including STOCK1N-113116, 
STOCK1N-81073, STOCK1N-51145, STOCK1N-59405, 
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STOCK1N-92951, STOCK1N-92949, STOCK1N-40367, 
STOCK1N-85433, STOCK1N-1935, STOCK1N-81980, 
STOCK1N-85851, and STOCK1N-42002, exhibit a lower 
risk of inhibiting the Human Ether-a-go-Go-Related Gene 
(hERG). The remaining compounds show a higher risk of 
hERG inhibition. Five compounds—STOCK1N-113116, 
STOCK1N-81073, STOCK1N-59405, STOCK1N-92951, 
and STOCK1N-92949—present a lower risk of mito-
chondrial toxicity, while the others demonstrate a higher 
risk. All compounds show a lower risk of nephrotoxic-
ity. However, only two compounds, STOCK1N-46158 and 
STOCK1N-83010, exhibit a lower risk of respiratory toxic-
ity, while the rest are associated with a higher risk (Table 4).

Induced fit docking (IFD) score of the 25 selected com-
pounds ranges from −  1987.21 to −  1915.39  kcal/mol. 
Based on the interaction retained during the IFD and 
ADMET profile, 7 ligands, namely, STOCK1N-85097, 
STOCK1N-84443, STOCK1N-85433, STOCK1N-84154, 
STOCK1N-85998, STOCK1N-88743, & 
STOCK1N-86060 were selected for molecular dynamics 

simulation studies. IFD score and 3D interaction image is 
provided in Supplementary file Table S3.

Molecular dynamic simulation (MDS) studies
In molecular dynamics simulations (MDS), convergence 
is assessed through the analysis of several key metrics. 
The root mean square deviation (RMSD) is utilized to 
evaluate the stability of structural deviations from the 
initial configuration. The root mean square fluctuation 
(RMSF) measures the consistency of atomic fluctuations 
across the simulation. The total energy of the system is 
monitored to ensure it stabilizes, indicating that the sys-
tem’s energy is equilibrated. Principal component analy-
sis (PCA) is applied to examine the stability of principal 
motion modes. The free energy landscape (FEL) is ana-
lyzed for consistency in the distribution of free energy 
states throughout the simulation. The radius of gyration 
(Rg) is used to assess the stability of the molecular com-
pactness. Post-MD molecular mechanics/generalized 
Born surface area (MM/GBSA) calculations are per-
formed to ensure consistent estimates of binding free 

Table 3 Drug-likeness and ADME profile of the selected compounds

QPlogKhsa prediction of binding to human serum albumin, QPlogBB predicted brain/blood partition coefficient, QPlogS predicted aqueous solubility, QPlog Po/w 
predicted octanol/water partition coefficient

Compound ID mol wt donorHB accptHB QPlogS QPlogPo/w QPlogBB QPlogKhsa %OralAbsorption Lipinski 
RuleOf5

Bioavailability 
Score

STOCK1N-113116 770.69 10 27.35 − 2.08 − 3.2 − 5.3 − 1.8 0 3 0.17

STOCK1N-81073 624.55 8 20.55 − 2.47 − 1.5 − 3.7 − 1.2 0 3 0.17

STOCK1N-51145 477.51 5 14.5 − 2.27 − 0.3 − 2.8 − 1.2 51 0 0.55

STOCK1N-59405 534.47 6 15.75 − 3.50 − 0.3 − 4.5 − 1.1 0 3 0.17

STOCK1N-84648 533.49 3 10.25 − 5.07 1.9 − 3.3 0.1 25 2 0.17

STOCK1N-46158 384.47 1 7.5 − 3.82 2.6 − 0.5 0.02 84 0 0.55

STOCK1N-85097 476.43 2 7.75 − 4.64 2.5 − 1.9 0.4 71 0 0.55

STOCK1N-84443 446.41 2 7 − 5.65 2.6 − 2.3 0.4 71 0 0.55

STOCK1N-64228 696.61 7 21.6 − 3.89 − 0.9 − 5.1 − 1.1 0 3 0.17

STOCK1N-84098 568.53 3 8.5 − 5.94 3.4 − 2.7 0.6 56 1 0.55

STOCK1N-85873 592.60 1 7.75 − 6.26 4.9 − 1.6 1.1 82 1 0.55

STOCK1N-92951 492.43 5 13.75 − 2.87 0.1 − 2.6 − 0.7 27 2 0.17

STOCK1N-92949 494.40 7 14.5 − 2.58 − 1.3 − 3.8 − 0.9 1 2 0.17

STOCK1N-40367 499.56 4.25 8.75 − 3.86 2.3 − 2.6 − 0.4 51 0 0.11

STOCK1N-85433 488.45 1 7.75 − 5.88 3.5 − 1.5 0.6 87 0 0.55

STOCK1N-1935 366.41 3 4 − 4.53 3.4 − 0.8 0.5 96 0 0.55

STOCK1N-81980 396.39 2 6.25 − 4.81 2.4 − 2.1 0.3 69 0 0.55

STOCK1N-85851 421.36 4 7.5 − 4.17 1.8 − 2.7 − 0.2 49 0 0.11

STOCK1N-84154 484.46 1 7 − 6.28 3.8 − 1.6 0.7 87 0 0.55

STOCK1N-85998 518.47 1 8.5 − 5.47 3.5 − 1.4 0.5 74 1 0.55

STOCK1N-86351 520.49 1 8.5 − 5.70 3.7 − 1.7 0.6 74 1 0.55

STOCK1N-88743 460.43 2 8 − 5.57 3.2 − 1.7 0.4 85 0 0.55

STOCK1N-42002 456.49 1.5 8.5 − 4.8 2.4 − 2.5 − 0.4 56 0 0.56

STOCK1N-86060 548.50 1 10.25 − 5.52 3.1 − 1.9 0.4 53 2 0.17

STOCK1N-83010 564.49 7 18.1 − 3.04 − 1.4 − 4.2 − 1.1 0 3 0.17
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energy. Finally, the solvent accessible surface area (SASA) 
is evaluated to determine the stability of solvent exposure 
of the molecular structure.

MDS for the 7 selected compounds was con-
ducted for 100  ns. Out of 7 compounds only 3 com-
pounds; STOCK1N-85097, STOCK1N-85998 & 
STOCK1N-86060, show good results and are discussed 
below. Complexes of Protein and ligand were generated, 
where Complex-1 indicate 8EXV-STOCK1N-85097 
complex, Complex-2 indicates 8EXV-STOCK1N-85998 
complex, Complex-3 indicates 8EXV- STOCK1N-86060 
complex, and Complex-4 indicates 8EXV-Inavolisib (Co-
crystalized Ligand) complex.

Root mean square deviation (RMSD) of protein and lig fit 
prot
During the 100  ns simulation, the Protein RMSD of 
Complex-1, Complex-2, Complex-3 & Complex-4 was in 
the range of 1.22−3.841 Å, 1.318–4.597 Å, 1.122–3.902 Å 
and 1.464–4.347 Å, respectively, with an average RMSD 
of 2.95 Å, 2.88 Å, 2.81 Å and 3.12 Å, respectively. Protein 

RMSD of all the complexes are stable with slight increase 
was observed for Complex-2 at 70  ns to 78  ns, after 
which it becomes stable (Fig. 2A). Lig fit prot RMSD of 
Complex-1, Complex-2, Complex-3 & Complex-4 was in 
the range 0.997–5.673 Å, 1.403–6.048 Å, 1.247–4.427 Å, 
& 0.963–3.877 Å, respectively (Fig. 2B). Complex-3 and 
Complex-4 were stable through the simulation duration 
with Complex-1 and complex-2 showing some instabil-
ity at 24 ns till 42 ns and 65 ns till 79 ns, respectively. As 
compared to other Complexes, the Complex-3 show sim-
ilar protein and lig fit prot RMSD as Complex-4.

Root mean square fluctuation (RMSF)
RMSF detects the residues responsible for variations in 
complex structure and illustrates specific changes occur-
ring along the protein chain. The main amino acid resi-
dues, namely, TRP780, TYP836, VAL851, ASP859 and 
ASP933, RMSF values were determined to identify the 
changes occurring during the simulations. In Com-
plex-1, the main amino acids TRP780, TYP836, VAL851, 
ASP859 & ASP933 show RMSF value of 0.669 Å, 0.579 Å, 

Table 4 Toxicity profile of the selected compounds

 − low risk, + high risk and III medium risk

Compound ID Acute Oral 
Toxicity

Blood Brain 
Barrier

Hepatotoxicity Human Ether‑a‑go‑go‑
Related Gene inhibition

Mitochondrial 
toxicity

Nephro‑
toxicity

Respiratory 
toxicity

STOCK1N-113116 III – – – – –  + 

STOCK1N-81073 III – – – – –  + 

STOCK1N-51145 III – – –  + –  + 

STOCK1N-59405 III – – – – –  + 

STOCK1N-84648 III – –  +  + –  + 

STOCK1N-46158 III –  +  +  + – –

STOCK1N-85097 III – –  +  + –  + 

STOCK1N-84443 III – –  +  + –  + 

STOCK1N-64228 III – –  +  + –  + 

STOCK1N-84098 III – –  +  + –  + 

STOCK1N-85873 III – –  +  + –  + 

STOCK1N-92951 III – – – – –  + 

STOCK1N-92949 III – – – – –  + 

STOCK1N-40367 III – – –  + –  + 

STOCK1N-85433 III – – –  + –  + 

STOCK1N-1935 III  +  + –  + –  + 

STOCK1N-81980 III – – –  + –  + 

STOCK1N-85851 III –  + –  + –  + 

STOCK1N-84154 III – –  +  + –  + 

STOCK1N-85998 III – –  +  + –  + 

STOCK1N-86351 III – –  +  + –  + 

STOCK1N-88743 III – –  +  + –  + 

STOCK1N-42002 III –  + –  + –  + 

STOCK1N-86060 III – –  +  + –  + 

STOCK1N-83010 III – –  +  + – –
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0.701 Å, 1.098 Å & 0.914 Å, respectively. In Complex-2, 
amino acids TRP780, TYP836, VAL851, ASP859 & 
ASP933 show RMSF value of 0.806 Å, 0.765 Å, 0.742 Å, 
1.202 Å & 0.895 Å, respectively. In Complex-3, the RMSF 
value of key amino acids TRP780, TYP836, VAL851, 
ASP859 & ASP933 are 0.726 Å, 0.634 Å, 0.616 Å, 1.082 Å 
& 0.819  Å, respectively. In Complex-4, the RMSF value 
of key amino acids TRP780, TYP836, VAL851, ASP859 & 
ASP933 are 0.638 Å, 0.611 Å, 0.667 Å, 1.073 Å & 0.875 Å, 
respectively. The fluctuations observed in the key amino 
acids of the Complexes (1, 2 & 3) were similar to that of 
Complex-4 (Fig. 3).

Ligand–protein complex interaction
Hydrogen bonds, π-π stacking, and π-cation stacking 
are essential for stabilizing protein–ligand interactions. 
Hydrogen bonds, formed between a hydrogen atom and 
electronegative atoms, improve binding strength, help 
maintain the ligand’s correct position, and ensure speci-
ficity. π-π stacking, which involves interactions between 
aromatic rings, provides extra stability and enhances 

the binding affinity. π-cation stacking, where aromatic 
rings interact with positively charged cations, further 
stabilizes the complex and supports precise ligand place-
ment. Together, these interactions reinforce the sta-
bility and effectiveness of the ligand–protein binding. 
In Complex-1, the ligand form Hydrogen bond with 
LYS802, GLU849, VAL851, GLN859 & SER919, water 
mediated H-bond with LYS802, π-cation stacking with 
ARG770 and π-π stacking with TRP780 (Fig.  4A). In 
Complex-2, ligand form Hydrogen bond with LYS802 
VAL851, SER854, GLN859 & LYS802, water mediated 
H-bond with GLU798, SER919, ASP933 and π-π stack-
ing with TRP780 (Fig.  4B). In Complex-3, ligand form 
Hydrogen bond with VAL851, SER854, GLN859 & 
LYS802, water mediated H-bond with SER773, ALA775, 
LYS802, ASP810, THR856 & SER919 and π-π stacking 
with TRP780 (Fig.  4C). In Complex-4, the ligand form 
Hydrogen bond with VAL851, SER854, GLN859, LYS802, 
and ASP933, water mediated H-bond with ARG770, 
GLU798, ASP810, TYR836, VAL851, SER854, & ASP933 
and π-π stacking with TRP780 & TYR836 (Figure D). It is 
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observed that all the ligands in the Complexes (1, 2 & 3) 
maintain an interaction similar to that of Complex-4.

Protein–ligand contact timeline
The protein–ligand contact timeline illustrates the dura-
tion of interactions between the ligand and the amino 
acids of the protein during the simulation. If the inter-
action value exceeds 1, it indicates that multiple amino 
acids were involved in the interaction. A value of 0.3 
signifies that the interaction was maintained for 30% of 
the simulated time. This timeline aids in understand-
ing which amino acids interacted with the ligand and 
for how long during the simulation. In Complex-1, the 
amino acids ARG770, TRP780, ILE800, LYS802, VAL851, 
SER854, GLN859, SER919, MET922, ILE932 & ASP933 
show interaction value of 0.299, 0.820, 0.412, 0.563, 1.009, 
0.270, 0.910, 0.653, 0.562, 0.700 & 0.226, respectively. In 
Complex-2, the interaction value of amino acids ARG770, 
MET772, TRP780, ILE800, LYS802, VAL851, SER854. 
GLN859, SER919, MET922, ILE932 & ASP933 is 0.262, 
0.268, 0.576, 0.222, 0.283, 0.316, 1.090, 0.455, 0.636, 
0.360, 0.585, 0.638 & 0.268, respectively. In Complex-3 
the interaction value of amino acids ARG770, SER774, 
ALA775, TRP780, ILE800, LYS802, VAL851, THR856, 
GLN859, SER919, MET922, ILE932 & ASP933 is 0.185, 
0.517, 0.366, 0.917, 0.541, 0.360, 0.990, 0.405, 0.844, 0.561, 
0.483, 0.815, & 0.205, respectively. In Complex-4, the 
amino acids TRP780, GLU798, ILE800, LYS802, ASP810, 
TYR836, VAL851, SER854, GLN859, ILE932 & ASP933 
show interaction value of 0.735, 0.287, 0.437, 0.560, 0.878, 
0.945, 1.312, 0.534, 0.971, 0.446 & 0.407, respectively. The 
interaction value of key amino acids of Complexes (1, 2 
& 3) is similar to Complex-4. The ligand–protein contact 
histogram and timeline are shown in Figs. 5 and 6.

Radius of gyration (Rg) and solvent accessible surface area 
(SASA)
The compactness of the Ligand–protein complex is eval-
uated by using the radius of gyration. The less the value 
of Rg, more the stability of folded protein which in turn 
indicates dynamic stability and compactness of the com-
plex. The Complex-1 has an average Rg value of 0.3050 Å 
and has a range of 0.2970 Å to 0.3087 Å. In Complex-2, 
the average Rg is 0.3046 Å and has a range of 0.2977 Å 
to 0.3087 Å. The Complex-3 has an average Rg value of 
0.3047  Å and has a range of 0.2971  Å to 0.3080  Å. The 
Complex-4 has an average Rg value of 0.3053 and has a 
range of 0.2973  Å to 0.3101  Å. The average Rg and the 
range of the Complexes (1, 2 & 3) is found to be margin-
ally smaller than the Complex-4 and shown in Fig. 7.

Solvent Accessible Surface Area (SASA) gives an idea 
about the area of ligand accessible to the solvent in 
Ligand–Protein complex. The SASA value of Complex-1, 
Complex-2, Complex-3, and Complex-4 is in the range 
of 52.04 Å2 to 262.55 Å2, 56.23 Å2 to 242.87 Å2, 68.70 Å2 
to 228.78 Å2 and 45.87 Å2 to 158.74 Å2, respectively. The 
average SASA value for Complex-1, Complex-2, Com-
plex-3, and Complex-4 is 138.24 Å2, 132.97 Å2, 145.14 
Å2 and 95.66 Å2, respectively (Fig. 8). It was observe that 
Complex-4 has lower SASA value as compared to other 
Complexes (1, 2 & 3).

Hydrogen bond (H‑Bond) analysis
Hydrogen bond plays a crucial role in the stability of 
Lignd-Protein complex. Its analysis helps in understand-
ing the interactions between the ligand and the protein’s 
amino acids and the rearrangements occur in the protein 
binding site upon ligand interaction. In Complex-1, 2571 
H-Bond was formed between the ligand and the protein 
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with VAL851, GLN859 and SER919 forming the major-
ity of bond with 37.88%, 24.69% and 17.74%, respectively 
(Fig. 9A). In Complex-2, 1933 H-bond was formed with 
the majority of bond formed with LYS802 (11.85%), 
VAL851 (51.42%) and GLN859 (20.69%) (Fig.  9B). In 
Complex-3, a total of 2298 H-bond was formed with 
LYS802 (16.41%), VAL851 (43.43%) and GLN859 
(21.41%) forming the majority of the bond (Fig.  9C). In 
Complex-4, 2851 H-bond was formed with majority of 

bond formed by LYS802 (16.03%), VAL851 (31.49%), 
SER854 (13.12%) and GLN859 (29.60%) (Fig. 9D).

Principal component analysis (PCA)
Principal Component study (PCA) is a very useful 
method for simplifying the complexity and recogniz-
ing crucial motions during the ligand–protein binding. 
Based on the trajectory a matrix is generated which 
excludes translational and rotational movements. The 

Fig. 4 Ligand–Protein complex interaction after MDS – A Complex-1, B Complex-2, C Complex-3, and D Complex-4
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eigenvectors, eigenvalues, and their projections onto the 
first two Principal Components (PCs) were then calcu-
lated using the essential dynamics procedure. The eigen-
values and eigenvectors were obtained by diagonalizing 
the matrix; the eigenvalues were found to be the asso-
ciated eigenvectors’ magnitude. The multidimensional 
space is described by the matrix of eigenvectors, which 
also gives details on the atoms’ displacements along each 
direction in the protein. Geo-Measures: A PyMOL plugin 
was used for generating the PCs [20]. In the Complex-1, 
the eigenvalues of PC-1 and PC-2 were in the range of 
−  3.246  nm to 7.404  nm and −  2.873  nm to 3.313  nm, 
respectively. The eigenvalues for PC-1 and PC-2 for 
Complex-2 is in the range of −  4.876 to 7.549  nm and 
−  3.101 to 5.718  nm, respectively. For Complex-3, the 
eigenvalues of PC-1 and PC-2 is in the range of − 4.981 
to 5.758  nm and −  4.904 to 5.041  nm, respectively. For 
Complex-4, the eigenvalues of PC-1 and PC-2 is in the 
range of − 4.494 to 6.655 nm and − 2.884 to 3.442 nm, 
respectively. Compared to Complex-2, Complex-1 and 
Complex-3 shows a very steady cluster and took up the 
least amount of phase space. The Complex-4 (Co-crystal-
ized ligand) shows better values and clusters as compared 
to all the other Complexes. The Scatter plot of PC-1 and 
PC-2 of the Complexes are shown in Fig. 10 and Cross-
correlation of the Complexes is shown in Supplementary 
file Figure S1.

Free energy landscape (FEL)
Energy analysis was performed using conformations pro-
duced by MD simulations. The protein free energy land-
scape (FEL), which provides information on structural 

changes and stability, may be used to analyze the energy 
distribution of a protein in a range of variables, including 
principal components (PCs). Geo-Measures: A PyMOL 
plugin was used for generating the FEL for the Com-
plexes using the PC-1 and PC-2 eigenvalues which gives 
details about the protein’s changes in conformation and 
stability. The Dark blue region (Less energy) indicates 
favorable conformation of protein and Red region indi-
cates higher energy reflecting the unfavorable conforma-
tions. The Gibbs free energy of Complex-1, Complex-2, 
Complex-3, and Complex-4 is in the range of 1.3 to 7.87 
kj/mol, 0 to 9.17 kj/mol, 0 to 6.94 kj/mol and 0 to 7.16 kj/
mol, respectively. Out of the Complexes (1, 2 & 3), Com-
plex-3 shows less Gibbs free energy range than Com-
plex-4 (Fig. 11).

Post MDs binding free energy (MMGBSA dG bind) and total 
energy
Post MDs Binding Free energy gives an idea about the 
stability of ligand–protein complex. The lower the value 
more the stability. The Complex-1, Complex-2, Com-
plex-3 and Complex-4 show an average MMGBSA 
dG bind value of −  56.55  kcal/mol, −  56.53  kcal/mol, 
−  66.18  kcal/mol and −  66.93  kcal/mol, respectively. 
The Complex-1, Complex-2, Complex-3, and Complex-4 
MMGBSA dg bind value lie in the range of −  68.15 to 
−  41.04  kcal/mol, −  71.94 to −  43.04  kcal/mol, −  81.38 
to −  52.70  kcal/mol and −  78.26 to −  55.98  kcal/mol, 
respectively. Out of the Complexes (1, 2 & 3), the Com-
plex-3 shows a similar average MMGBSA dg bind value 
and lower energy range as compared to the Compex-4 
(Fig. 12).

Fig. 5 Ligand–Protein complex timeline – A Complex-1, B Complex-2, C Complex-3, and D Complex-4
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The Ligand–protein complex total energy is shown in 
Fig. 13. The average total energy of the Complex-1, Com-
plex-2, Complex-3 and Complex-4 is 1,218,800  kcal/
mol, 1,433,712  kcal/mol, 1,219,093  kcal/mol and 

1,213,924  kcal/mol, respectively. The lower the total 
energy of Ligand–protein complex higher its stability, 
Complex-1 and Complex-3 show similar energy range to 
that of Complex-4 signifying the stability of the protein 

Fig. 6 Ligand–Protein complex timeline – A Complex-1, B Complex-2, C Complex-3, and D Complex-4
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ligand complex. The total energy of Complex-2 is found 
to be higher than all the other Complexes.

Conclusion
PI3K-α belongs to the Class-1 subdivision of PI3K, and 
its mutation is responsible for about 29% of breast can-
cers and roughly 40% of HR + /HER2- metastatic breast 
cancers. This study employed computational techniques 

to identify natural compounds: isoform and mutant spe-
cific PI3K-α inhibitors. The e-Pharmacophore model was 
used to generate a hypothesis using Inavolisib, which 
is under clinical trial Phase-3 for indication of HR + , 
HER2-negative, PIK3CA mutated mBC post CDK4/6i 
therapy (PDB: 8EXV). Phase screening, ligand docking, 
induced-fit docking, and ADMET analysis, Seven com-
pounds were selected for molecular dynamics simulation 
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analysis. Out of those seven compounds, only three com-
pounds, namely STOCK1N-85097, STOCK1N-85998, 
and STOCK1N-86060, show good RMSD, RMSF, Rg, 
SASA, PCA, FEL, and Total energy. It was observed 
that the Ligands made interaction with amino acids 
residue ARG770, ASP (810 & 933), GLN859, GLU798, 
LYS802, SER854, TRP780, and VAL851 of the PI3K-α 
protein, which is similar to the Co-crystalized Ligand 

(Inavolisib). Therefore, it can be predicted that the com-
pounds will follow similar mechanism of action to inhibit 
PI3K–α protein. Out of three selected compounds, 
STOCK1N-86060 showed better results, and its values 
were significantly similar or better. Based on the present 
research, compound STOCK1N-86060 can be proposed 
as a potential inhibitor of PI3K-α, which should be vali-
dated using proper in-vitro and in-vivo models.

A B

DC

Fig. 11: 3D Free Energy Landscape – A Complex-1, B Complex-2, C Complex-3, and D Complex-4
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Fig. 12 Post MDs Binding Free energy of the Complexes

Fig. 13 Total Energy of – A Complex-1, B Complex-2, C Complex-3, and D Complex-4
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