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Abstract
Gliomas, particularly glioblastoma (GBM), are highly aggressive brain tumors with poor prognosis and high 
recurrence rates. This underscores the urgent need for novel therapeutic approaches. One promising target is 
Focal adhesion kinase (FAK), a key regulator of tumor progression currently in clinical trials for glioma treatment. 
Drug development, however, is both challenging and costly, necessitating efficient strategies. Computer-Aided 
Drug Design (CADD), especially when combined with machine learning (ML), streamlines the processes of virtual 
screening and optimization, significantly enhancing the efficiency and accuracy of drug discovery. Our study 
integrates ML, docking analysis, ADMET (absorption, distribution, metabolism, elimination, and toxicity) studies to 
identify novel FAK inhibitors specific to GBM. Predictive models showed strong performance, with an R2 of 0.892, 
MAE of 0.331, and RMSE of 0.467 using protein-level IC50 data in combined CDK, CDK extended fingerprints, and 
substructure fingerprint counts derived from 1280 FAK inhibitors. Another model, based on IC50 data from 2608 
compounds tested on U87-MG cells, achieved an R2 of 0.789, MAE of 0.395, and RMSE of 0.536. Using these models, 
we efficiently identified 275 potentially active compounds out of 5107 candidates. Subsequent ADMET analysis 
narrowed this down to 16 potential FAK inhibitors that meet the established drug-likeness criteria. Moreover, 
molecular dynamics (MD) simulations validated the stable binding interactions between the selected compounds 
and the FAK protein. This study highlights the effectiveness of combining ML, docking analysis, and ADMET studies 
to rapidly identify potential FAK inhibitors from large databases, providing valuable insights for the systematic 
design of FAK inhibitors.
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Introduction
Gliomas constitute over 30% of primary brain tumors, 
with more than half classified as the highly aggressive 
glioblastoma (GBM) [1]. GBM tumor cells exhibit low 
differentiation, high invasiveness into normal brain tis-
sue, and strong resistance to conventional treatments, 
leading to a high recurrence rate and formidable thera-
peutic challenges [2]. Complete surgical resection of 
infiltrated tumor cells is challenging, while the remaining 
malignant cells exhibit potent anti-apoptotic capabili-
ties, fueling tumor relapse [3]. The resistance of GBM to 
conventional treatments is attributed to its internal sub-
populations of stem cells and highly mutated genome, 
complicating treatment strategies [4]. Despite significant 
advancements in medical technology, including maxi-
mal surgical resection, radiotherapy, and temozolomide 
chemotherapy, the prognosis for GBM patients has seen 
only marginal improvement over the past few decades. 
The median survival time remains disappointingly low, 
typically not exceeding 15 months [5]. Hence, there is an 
urgent need to explore novel therapeutic avenues. With 
an enhanced understanding of GBM biology, innova-
tive targeted therapies, particularly focusing on integ-
rin downstream signaling effectors like Focal adhesion 
kinase (FAK), have emerged as a key research focus [6]. 
Early clinical trials have demonstrated promising out-
comes, instilling renewed optimism for precise GBM 
treatment [7, 8].

Focal adhesion kinase (FAK), belonging to the protein 
tyrosine kinase group, is essential in controlling cellular 
reactions to a range of signals, including integrins, cyto-
kines, chemokines, and growth factors, thus exerting a 
notable impact on tumor advancement and spread [9, 
10]. Studies have linked the FAK signaling pathway to 
crucial physiological and pathological processes like epi-
thelial-mesenchymal transition, angiogenesis, cell migra-
tion, and invasion, thus impacting the aggressiveness of 
cancers, including gliomas [11]. Consequently, targeting 
FAK activity has emerged as an innovative strategy in 
cancer therapy. Ongoing research underscores FAK as 
a critical target for the treatment of brain gliomas, with 
numerous small molecule inhibitors currently undergo-
ing preclinical and clinical evaluations [12, 13]. There-
fore, the development of FAK inhibitors is of paramount 
importance.

The process of developing novel drugs is not only 
expensive but also time-consuming. To reduce costs 
and enhance research efficiency, Computer-Aided Drug 
Design (CADD) is assuming an increasingly significant 
role in drug discovery [14]. Unlike traditional trial-and-
error methods in the laboratory, CADD utilizes com-
puter simulation techniques, enabling researchers to 
efficiently screen and optimize drugs in a virtual environ-
ment, significantly reducing unnecessary experimental 

steps and saving research costs [15]. In this regard, the 
construction of machine learning (ML) models is widely 
applied in CADD and has now permeated various stages 
of drug development [16–18]. Currently, several studies 
have applied machine learning to predict the activity of 
FAK inhibitors [19–22]. For example, Wang et al. utilized 
22 FAK inhibitors to develop two types of satisfactory 
3D-QSAR models [21]: the comparative molecular field 
analysis (CoMFA) model (R2

cv = 0.528, R2
pred = 0.7557) 

and the comparative molecular similarity indices analy-
sis (CoMSIA) model (R2

cv = 0.757, R2
pred = 0.8362), for 

predicting the inhibitory activities of novel inhibitors. 
However, the current QSAR models used to predict 
FAK inhibition activity have relatively small construc-
tion datasets, typically comprising only tens to hundreds 
of compounds, which somewhat limits the widespread 
applicability of the models. Therefore, it is particularly 
important and urgent to construct a predictive model 
based on a relatively large dataset (with more than 1000 
data points) to enable rapid screening of FAK inhibitors 
for glioblastoma.

In this study, we propose a comprehensive research 
framework that integrates machine learning mod-
els, docking analysis, ADMET studies, and molecular 
dynamics simulations to facilitate the design of novel 
FAK inhibitors against glioblastoma (Scheme 1). This 
integrated approach aims to accelerate the identification 
and development of potential FAK inhibitors, providing a 
valuable strategy for advancing GBM therapeutics.

Materials and methods
Development of the database
The modeling dataset, comprising molecular struc-
tures and their corresponding inhibitory activity against 
FAK (expressed as half-maximal inhibitory concentra-
tion IC50), was retrieved from the CHEMBL database 
(CHEMBL2695, https://www.ebi.ac.uk/chembl/target_
report_card/CHEMBL2695/) on January 24, 2024 [23], 
initially consisting of 4730 entries. Specific IC50 values 
were used for compounds enabling the calculation of 
pIC50. The study employed the base-10 logarithm of IC50 
(represented as -logIC50, denoted as pIC50) as the depen-
dent variable, rather than IC50. In cases where the same 
compound displayed varying IC50 values within a nar-
row range (10 μm), the average was calculated as the final 
IC50 value, resulting in IC50 values for 1280 compounds. 
The distribution of pIC50 for the 1280 FAK inhibitors 
is depicted in Fig.  1a, with values ranging from 4.00 to 
10.00, predominantly falling between 5.00 and 9.50. The 
examination of plain ring and Murcko scaffolds for the 
1280 inhibitors was performed using DataWarrior soft-
ware [24], which resulted in identifying 121 unique plain 
rings and 449 unique Murcko scaffolds. The configura-
tions of the top 28 plain rings are presented in Fig. S1. 

https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL2695/
https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL2695/
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Notably, 35 of these plain rings were found to occur more 
than 10 times, with additional information available in 
Supporting Information Table S1. Supporting Infor-
mation Table S2 offers detailed insights into the top 50 
Murcko scaffolds, highlighting the structural diversity 
within the FAK inhibitor dataset.

The dataset of compounds targeting U-87 MG glio-
blastomas was also obtained from the CHEMBL data-
base (CHEMBL3307575, https://www.ebi.ac.uk/chembl/
cell_line_report_card/CHEMBL3307575/), initially com-
prising 11,597 entries. Specific IC50 values were utilized 
for compounds to enable the calculation of pIC50. We 
utilized data for compounds with specific IC50 values 
(allowing the calculation of pIC50). In cases where the 
same compound exhibited minor variations in IC50 val-
ues (within a range of 10 μm), the average was computed 
as the final IC50 value. Data exhibiting differences greater 
than 10 µM were excluded, resulting in IC50 values for 
2608 compounds. The pIC50 distribution histogram for 
these 2608 compounds against U87-MG glioblastomas is 
depicted in Fig. 1b, demonstrating a predominant pIC50 

range of 4.00-7.50. As in the previous analysis, we uti-
lized DataWarrior software to thoroughly investigate the 
ring systems and Murcko backbones of 2608 compounds 
targeting U-87 MG glioblastomas. This analysis identi-
fied 347 distinct common rings and 2678 unique Murcko 
scaffolds. Fig. S2 illustrates the structures of the top 28 
most frequently occurring common rings, with 84 of 
them appearing more than 10 times, as detailed in Sup-
porting Information Table S3. Furthermore, Supporting 
Information Table S4 provides a comprehensive list of 
the top 50 Murcko scaffolds, showcasing not only their 
prevalence in the compounds but also emphasizing the 
structural diversity within the U-87MG dataset.

Molecular descriptions calculation and machine learning 
models building
Molecular fingerprints were utilized as inputs for the 
models to transform molecules into numerical vectors 
through fingerprints computation, enabling their integra-
tion into machine learning algorithms. These fingerprints 
encapsulate molecular structures in binary or continuous 

Fig. 1 The pIC50 distribution histogram of (a) 1280 FAK inhibitors (b) 2608 compounds against U87-MG

 

Scheme 1 Flowchart of combined machine learning models, docking analysis, and ADMET studies for the design of novel FAK inhibitors against human 
malignant glioblastoma

 

https://www.ebi.ac.uk/chembl/cell_line_report_card/CHEMBL3307575/
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values, reflecting the diversity and similarity across mol-
ecules [25]. In this study, we successfully converted mol-
ecules into numerical vectors of fixed lengths through 
the application of molecular descriptors. This method of 
conversion ensures that key chemical properties of the 
molecules are retained while also enabling more efficient 
and standardized data processing and analysis in later 
stages. PaDEL software was employed in this research 
to compute molecular fingerprints [26]. Four catego-
ries of fingerprints were computed: CDK fingerprints, 
CDK extended fingerprints, substructure fingerprints, 
and substructure fingerprint counts. Additional details 
regarding these molecular descriptors can be found in 
Table S5. The regression models leveraged LightGBM, 
Random Forest, SVR, KNN, PLS, LASSO, and XGBoost 
algorithms. The LightGBM algorithm was prioritized in 
this study due to its advantages as an ensemble learn-
ing algorithm over conventional methods [27]. Training 
and testing with established datasets linking molecular 
descriptors to pIC50 values enabled the development of 
pIC50 machine learning models. The datasets were split 
into training and independent test sets, maintaining an 
80:20 ratio. Ten-fold Cross-validation was implemented 
during model training to mitigate the impact of random 
data partitioning, while optimization techniques such as 
hyperparameter tuning were applied to enhance model 
performance. Grid search methodology was utilized to 
determine optimal parameters for the models. Tables S6 
and S7 present the optimal parameters for the algorithms 
employed in this study. In this research, multiple predic-
tive models were constructed utilizing the Scikit-learn 
within the Python 3.7 environment. To comprehensively 
evaluate the predictive performance of these regression 
models, we employed various metrics, including Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), 
and the Coefficient of Determination (R² score, abbrevi-
ated as R²). The corresponding formula is shown below:
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In this equation, yexp represents the experimental values, 
while ypred corresponds to the predicted values. −y  refers 
to the average of the predicted values, and m indicates 
the sample size. All associated source code and datasets 

are publicly available at the following link: https://github.
com/Yihuan-Zhao93/FAKML.

Molecular docking studies
The crystal structure of the FAK protein required for 
this study (PDB ID: 2JKK) was sourced from the inter-
nationally recognized Protein Data Bank (PDB, available 
at http://www.rcsb.org/pdb) [28]. To ensure accurate 
molecular docking, the original crystal structure of the 
FAK protein retrieved from the PDB was subjected to a 
series of preprocessing steps. Prior to docking, all crys-
tallized water molecules and the bound ligand from the 
original PDB file were eliminated, and partial charges 
were assigned to the atoms. The ligand was subse-
quently converted into a three-dimensional structure 
and saved in pdbqt format using Autodock software 
[29]. Both the protein and ligand were subsequently 
prepared for molecular docking using AutoDock Vina. 
The compounds were docked into the active site of the 
FAK protein, defined by a grid box with dimensions of 
22.5 × 22.5 × 22.5 (Å3), centered at the binding location 
of the co-crystallized ligand. The binding energy was the 
key measure of compound activity, where lower values 
signified stronger ligand-receptor interactions. To gain 
a more detailed understanding of the interaction mecha-
nisms between the ligand and FAK protein, comprehen-
sive analysis was performed using the Discovery Studio 
Visualizer software [30].

ADME prediction
One of the leading reasons for failures in drug discovery 
is linked to poor pharmacokinetics and toxicity issues. 
As a result, it is crucial to evaluate the absorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET) 
properties of compounds at an early stage of drug devel-
opment. In this research, we utilized the ADMETlab 2.0 
[31] to predict the ADMET characteristics of FAK inhibi-
tors identified via our predictive models. By inputting the 
SMILES strings of the compounds, the platform auto-
matically generated ADMET-related predictions.

MD simulation
In this study, the Gromacs 2022 software platform [32] 
was used for exhaustive molecular dynamics (MD) simu-
lations. First, based on the docking results, the proteins 
were separated from the small molecule ligands. Force 
field parameters were generated for the small-molecule 
ligands using the antechamber tool in the AmberTools 
suite, and these parameters were converted to a Gro-
macs software-compatible format using the ACPYPE 
tool. During simulations, small molecule ligands were 
described using the Generalized Amber Force Field 
(GAFF), while proteins were modeled combining the 
AMBER14SB force field with the TIP3P water model. 

https://github.com/Yihuan-Zhao93/FAKML
https://github.com/Yihuan-Zhao93/FAKML
http://www.rcsb.org/pdb
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Next, the processed protein and ligand files were merged 
to construct the complete simulation system. The simula-
tions were performed at constant temperature and pres-
sure, and periodic boundary conditions were applied to 
ensure the stability of the system. During the simulation, 
the LINCS algorithm was used to constrain the hydrogen 
bonding and the time step was set to 2 femtoseconds. 
Electrostatic interactions were calculated by the Parti-
cle Mesh Ewald (PME) method with the cutoff distance 
set to 1.2 nm, while non-bonding interactions were cal-
culated using a cutoff distance of 10 angstroms and the 
interaction list was updated every 10 steps. The system 
temperature was regulated at 298  K using a V-rescale 
thermostat, while pressure was maintained at 1 bar by a 
Berendsen barostat. Prior to the production molecular 
dynamics (MD) simulation, the system was equilibrated 
for 100 picoseconds under the NVT and NPT ensem-
bles. A production MD simulation was then conducted 
for 100 nanoseconds, with system snapshots taken every 

10 picoseconds. Finally, the simulation trajectories were 
analyzed using VMD and PyMOL software.

Results and discussion
Development of ML models for FAK inhibitors
In this research, the representation of FAK inhibitors 
within the dataset encompassed CDK, CDK extended, 
substructure fingerprint, substructure fingerprint 
counts and their respective counts. CDK fingerprints 
are composed of one-dimensional arrays, 1024 bits 
long, organized based on the existence of distinct struc-
tural elements. Extended CDK fingerprints represent an 
advancement over the standard CDK iteration, incorpo-
rating supplementary ring features. Similarly, the sub-
structure fingerprints and counts were created as 307-bit 
binary strings, where each bit denoted the presence of 
SMARTS patterns for functional group classification by 
Christian Laggner. Initially, an analysis was conducted to 
evaluate the impact of various model inputs on predic-
tive performance to determine the optimal model input. 
Table 1 summarizes the performance of the test set using 
LightGBM-based machine learning models, presenting 
the averaged R2, MAE, and RMSE values from ten-fold 
cross-validation. The outcomes indicated that using a 
single molecular fingerprint resulted in lower predictive 
performance compared to combined molecular finger-
prints, emphasizing the complementarity of combined 
fingerprints in enhancing the representation of relevant 
molecular structural information. The model achieved 
the highest predictive accuracy when integrating com-
bined CDK, CDK extended, and substructure fingerprint 
counts. Although combining all molecular fingerprints 
could yield similar results, the computational efficiency 
of utilizing these three fingerprints guided the selection 
for subsequent model development. Table S8 presents a 
thorough summary of the prediction outcomes for both 
the training and test sets, conducted without the use 
of cross-validation. The findings demonstrate that the 
model exhibits superior performance when utilizing a 
combination of CDK, extended CDK, and substructure 
fingerprint counts as input features. Fig.  2 further illus-
trates the predictive performance of the optimal model 
on both the training and independent test sets. As shown, 
the training set achieves an R2 value as high as 0.990, with 
a mean absolute error (MAE) of 0.094 and a root mean 
square error (RMSE) of 0.132. On the independent test 
set, the model still attains an R2 value of 0.892, while the 
MAE and RMSE are 0.331 and 0.467, respectively. These 
findings highlight the accurate predictive capability of 
LightGBM-based molecular fingerprint models in deter-
mining the activity (pIC50) of FAK inhibitors.

In order to assist researchers in designing FAK inhibi-
tors, we conducted an analysis of feature importance. 
Fig. 3a depicts the top ten significant features identified 

Table 1 Performance of the ML models on the ten-fold cross-
validation of test set using LightGBM method
Fingerprint Input Test set

Number R2 MAE RMSE
CDK 1024 0.876 ± 0.006 0.356 ± 0.010 0.500 ± 0.012
CDK extended 1024 0.881 ± 0.005 0.353 ± 0.006 0.489 ± 0.011
Substructure 307 0.785 ± 0.006 0.492 ± 0.007 0.658 ± 0.009
Substructure 
count

307 0.816 ± 0.006 0.452 ± 0.007 0.609 ± 0.010

CDK + CDK 
extended

2048 0.887 ± 0.007 0.339 ± 0.010 0.477 ± 0.014

Substruc-
ture + Sub-
structure count

614 0.816 ± 0.006 0.452 ± 0.007 0.610 ± 0.010

CDK + Sub-
structure count

1331 0.881 ± 0.005 0.349 ± 0.006 0.490 ± 0.010

CDK extend-
ed + Substruc-
ture count

1331 0.883 ± 0.004 0.351 ± 0.006 0.487 ± 0.008

CDK + Sub-
structure + Sub-
structure count

1638 0.881 ± 0.005 0.349 ± 0.006 0.490 ± 0.010

CDK extend-
ed + Substruc-
ture + Sub-
structure count

1638 0.883 ± 0.004 0.351 ± 0.006 0.487 ± 0.008

CDK + CDK ex-
tended + Sub-
structure

2355 0.885 ± 0.006 0.344 ± 0.009 0.482 ± 0.012

CDK + CDK ex-
tended + Sub-
structure count

2355 0.888 ± 0.005 0.342 ± 0.006 0.476 ± 0.010

CDK + CDK 
extend-
ed + Substruc-
ture + Sub-
structure count

2662 0.888 ± 0.005 0.342 ± 0.006 0.476 ± 0.010
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through the LightGBM algorithm, with SubFPC307 
emerging as the most critical. SubFPC307 indicates the 
presence of a specified chiral center, highlighting a spe-
cific atom in the molecule exhibiting chirality. Subse-
quently, SubFPC300 (1,3-Tautomerizable) relates to the 
potential for 1,3-tautomerization, SubFPC302 (Rotatable 
bond) signifies a bond capable of rotation, SubFPC295 
(CONS bond) represents a conserved bond type, and 
SubFPC1 (Primary carbon) denotes a primary carbon 
atom. Moreover, the fingerprints FP890, FP14, FP283, 
ExtFP698, and FP702 correspond to specific struc-
tural elements or features within the molecule, provid-
ing valuable insights into their chemical properties and 
functionalities. Moreover, Fig.  3b compares the predic-
tive performance of various methods on the indepen-
dent test set when using optimal model parameters (see 
Table S6 for details). It is noteworthy that the LightGBM 
algorithm produces the lowest MAE and RMSE values, 

highlighting its superior predictive accuracy. Therefore, 
in the subsequent model construction, we will continue 
to choose this algorithm as our first option for model 
development.

Development of ML models for U-87 MG glioblastomas
Firstly, we selected the optimal combination of inputs for 
the model. Table 2 illustrates the evaluation results of the 
machine learning models using cross-validation on the 
test set with the LightGBM approach. The results dem-
onstrate that the highest model performance is attained 
when CDK, CDK extended fingerprints, and substruc-
ture fingerprint counts are employed as input variables. 
Simultaneously, Table S9 details the prediction results 
for the training and test sets without cross-validation, 
highlighting the maximum accuracy achieved using a 
combination of CDK, CDK extended fingerprints, and 
substructure fingerprint counts. This finding aligns with 

Fig. 3 (a) the feature importance plot and (b) the predictive performance of different algorithms using the optimal model parameters

 

Fig. 2 The true pIC50 value and predicted value obtained from LightGBM model of (a) Training set and (b) Independent test set
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the FAK inhibitor pIC50 activity model, underscoring the 
enhanced model performance with the incorporation of 

complementary molecular structural information. Fig.  4 
depicts the predictive accuracy of the optimal model 
using the LightGBM algorithm. The training set achieved 
an R2 value of 0.972, an MAE value of 0.126, and an 
RMSE value of 0.192, while the testing set showed an 
R2 value of 0.789, an MAE value of 0.395, and an RMSE 
value of 0.536. These results indicate that molecular fin-
gerprint models based on LightGBM are proficient in 
predicting the activity (pIC50) of compounds against 
U-87 MG glioblastomas.

To assist researchers in designing compounds for 
combatting U-87 MG glioblastomas, we conducted an 
analysis of feature importance. Fig. 5a illustrates the top 
ten significant features using the LightGBM algorithm. 
SubFPC307 is ranked as the most crucial, representing a 
“Chiral center specified”, indicating a specific atom within 
the molecule exhibiting chirality. Subsequently, Sub-
FPC300 (1,3-Tautomerizable) relates to the potential for 
1,3-tautomerization between two isomeric forms, Sub-
FPC295 (CONS bond) signifies a conserved bond type, 
SubFPC302 (Rotatable bond) indicates a bond capable 
of rotation, SubFPC1 (Primary carbon) denotes a pri-
mary carbon atom, SubFPC18 (Alkylarylether) refers to a 
functional group combining alkyl and aryl moieties, Sub-
FPC2 (Secondary carbon) signifies a secondary carbon 
atom, SubFPC274 (Aromatic) represents an aromatic sys-
tem, while SubFPC2745 (Heterocyclic) and SubFPC2745 
(Hetero N nonbasic) indicate the presence of heterocy-
clic structures containing non-basic nitrogen atoms. In 
Fig.  5b, a comparison of predictive performance among 
various algorithms under optimal model parameters on 
the independent test set (refer to Table S7) is presented. It 
is evident from the figure that employing the LightGBM 
algorithm minimizes MAE and RMSE values, indicating 
superior predictive performance. These results collec-
tively highlight the efficiency of the LightGBM algorithm 

Table 2 Performance of the ML models on the ten-fold cross-
validation of test set using LightGBM method
Fingerprint Input Test set

Number R2 MAE RMSE
CDK 1024 0.760 ± 0.012 0.417 ± 0.009 0.572 ± 0.014
CDK extended 1024 0.756 ± 0.015 0.421 ± 0.006 0.577 ± 0.018
Substructure 307 0.650 ± 0.009 0.491 ± 0.006 0.691 ± 0.009
Substructure 
count

307 0.709 ± 0.013 0.462 ± 0.012 0.630 ± 0.014

CDK + CDK 
extended

2048 0.765 ± 0.010 0.413 ± 0.011 0.565 ± 0.012

Substruc-
ture + Sub-
structure count

614 0.710 ± 0.013 0.461 ± 0.012 0.629 ± 0.014

CDK + Sub-
structure count

1331 0.769 ± 0.010 0.398 ± 0.009 0.562 ± 0.012

CDK extend-
ed + Substruc-
ture count

1331 0.770 ± 0.010 0.412 ± 0.009 0.560 ± 0.012

CDK + Sub-
structure + Sub-
structure count

1638 0.769 ± 0.010 0.398 ± 0.009 0.562 ± 0.012

CDK extend-
ed + Substruc-
ture + Sub-
structure count

1638 0.770 ± 0.010 0.412 ± 0.009 0.560 ± 0.012

CDK + CDK ex-
tended + Sub-
structure

2355 0.765 ± 0.010 0.416 ± 0.010 0.566 ± 0.011

CDK + CDK ex-
tended + Sub-
structure count

2355 0.782 ± 0.010 0.398 ± 0.006 0.545 ± 0.013

CDK + CDK 
extend-
ed + Substruc-
ture + Sub-
structure count

2662 0.782 ± 0.010 0.398 ± 0.006 0.545 ± 0.013

Fig. 4 The true pIC50 value and predicted value obtained from LightGBM model of (a) Train set and (b) Independent test set

 



Page 8 of 12Zhao et al. BMC Chemistry          (2024) 18:203 

in accurately constructing models to predict the IC50 
activity of organic small compounds.

Molecular docking analysis
Prior to the molecular docking procedure, the reliability 
of the methodology was evaluated through an initial vali-
dation phase. The crystallographically resolved ligand, 
TAE-226, was extracted and repositioned into the active 
pocket of the FAK protein. As illustrated in Supplemen-
tary Fig. S3, the superimposition of the cocrystallized and 
redocked structures yielded a Root Mean Square Devia-
tion (RMSD) of 0.581 Å, indicative of precise pose reca-
pitulation. Further docking analysis unveiled a docking 
scores of -9.613  kcal/mol between TAE-226 and FAK, 
corroborating their robust interaction. Subsequently, the 
ChemDiv compound library, comprising an extensive 
collection of 1.6  million compounds, was subjected to 
docking simulations within the identical binding inter-
face utilizing the predefined algorithmic parameters. In 

line with reference [22], compounds exhibiting dock-
ing score values equal to or below − 9.000 kcal/mol were 
selected for further investigation. Following the applica-
tion of a docking score cut-off of -9.000  kcal/mol, 5107 
compounds were selected as potential FAK inhibitors for 
further analysis. Fig.  6a displays the pIC50 values of the 
5107 compounds predicted by the models, revealing a 
subset meeting the pIC50 criteria for the FAK protein and 
exceeding 6.00 at the cellular level for U-87MG. Among 
the screened compounds, 275 exhibited pIC50 values sur-
passing 6.00 for both the FAK protein and U-87MG cells, 
constituting 5.38% of the total compounds. The subse-
quent analysis will focus on predicting the ADMET prop-
erties of these 275 compounds. The DataWarrior software 
was employed to analyze the plain ring and Murcko scaf-
folds of the 5107 compounds, leading to the identification 
of 391 plain rings and 2277 Murcko scaffolds. Addition-
ally, the molecular weight (MW) and AlogP values for all 
5,107 compounds were computed and then represented 

Fig. 6 (a) Prediction of pIC50 for 5107 compounds (b) The chemical space distribution of 5107 molecules

 

Fig. 5 (a) the feature importance plot (b) the predictive performance of different algorithms under the optimal model parameters
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in a two-dimensional plot to facilitate the analysis of the 
chemical space. Fig.  6b visually represents the chemical 
space distribution among the 5107 compounds, high-
lighting a diverse array of compounds. This broad chemi-
cal diversity enhances the potential for discovering FAK 
molecules with distinct pharmacological effects, present-
ing promising avenues for FAK inhibitor development.

ADME prediction analysis
Pharmacokinetic profiling and safety evaluation are 
crucial components of the drug discovery process. To 
thoroughly assess these essential factors, we utilized the 
advanced ADMETlab 2.0 platform, which provides pre-
cise predictions of absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) properties for target 
compounds. Building on this, we applied four well-estab-
lished drug-like evaluation criteria derived from exten-
sive experience in drug development: Lipinski’s rule of 
five, the Pfizer rule, the GSK rule, and the Golden Tri-
angle. These benchmarks enabled a comprehensive eval-
uation of the potential efficacy and drug-likeness of our 
newly-designed FAK inhibitors. Out of 275 candidates, 
16 compounds (Fig. 7) were identified as fully meeting all 

four drug-likeness criteria. Comprehensive ADMET data 
for these 16 compounds is presented in Table S10. With 
the exception of compounds 4, 6, and 14, all other com-
pounds demonstrate excellent human intestinal absorp-
tion (HIA). Among compounds 1, 2, 4, 6, 14, and 15, 
which exhibit Caco-2 cell permeability exceeding − 5.15, 
the remaining compounds showcase optimal perme-
ability in the Caco-2 model, and all compounds display 
favorable permeability in the MDCK cell model. Less 
than half of the compounds possess appropriate plasma 
protein binding (PPB) values (≤ 90%); however, the vol-
ume of distribution (VD) values for all compounds fall 
within acceptable ranges. In addition to PPB and VD, 
evaluating blood-brain barrier (BBB) penetration is criti-
cal for understanding compound distribution. Among 
the compounds, only 1, 4, 5, 7, and 11 demonstrate ideal 
BBB penetration. CYP2D6 and CYP3A4, integral mem-
bers of the cytochrome P450 (CYP) enzyme family, are 
involved in metabolizing over 70% of approved drugs. In 
this context, the FAK candidates are likely substrates of 
CYP2D6 or CYP3A4 enzymes, except for compounds 2, 
4, 5, 12, and 16, indicating favorable metabolic charac-
teristics. Furthermore, all candidate compounds exhibit 

Fig. 7 The chemical structural of 16 potential new FAK inhibitors
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appropriate half-lives (T1/2), with the majority showing 
no toxicity in the Ames test, although compound 15 may 
possess mutagenic potential.

The binding patterns of the top seven potential com-
pounds are depicted in Fig.  8. The results demonstrate 
that TAE-226, used as a positive control, forms strong 
interactions with FAK through hydrogen bonds involv-
ing the Cys502 and Asp564 residues. According to our 
statistical analysis (Table S11), most of the selected 
compounds bind to FAK by forming hydrogen bonds 
with Cys502 or Asp564, with some also interacting with 
Leu567, Glu430, Glu500, and Glu506 residues. Addition-
ally, other types of interactions, such as Van der Waals 
forces, π-alkyl, and π-σ interactions, were observed 
between TAE-226 and FAK. Specifically, TAE-226 forms 
π-σ interactions with the Leu553 residue, and statistical 
data (Table S11) suggest that other compounds predomi-
nantly interact with Leu553 through π-σ interactions, 
highlighting its significant role. Several residues, includ-
ing Leu501, Leu553, Leu567, Ala452, Met499, and Ile428, 
contribute to π-alkyl interactions. The docking analy-
sis identifies critical residues linked to FAK’s biological 
effects, namely Cys502, Asp564, Leu553, Leu501, Leu567, 
Ile428, Ala452, and Met499. Furthermore, Table S12 
compares the chemical similarity between 16 FAK hits 
and their closest ChEMBL FAK ligands based on ECFP4 
fingerprints, revealing low structural similarity between 
these compounds and known FAK inhibitors, underscor-
ing the novelty of the screened compounds.

MD simulation analysis
To further explore the binding stability between specific 
small molecules and the FAK protein, we representa-
tively selected the complexes of compounds 1 and 2 with 
the FAK protein and conducted molecular dynamics 
(MD) simulation experiments. Root mean square devia-
tion (RMSD), a crucial measure for assessing the overall 
deviation of atomic positions from a reference structure 
over time, was employed as a primary indicator of system 
stability [33]. As depicted in Fig. 9 (a), the RMSD values 
for both the complex and the protein remained consis-
tent throughout the simulation, signifying that the com-
pound 1-FAK complex reached a stable state. Similarly, 
Fig. 9 (b) shows stable RMSD values for the complex and 
protein, indicating that compound 7 also achieved stabil-
ity when bound to FAK. To further analyze the system, 
energy components such as solvation energy, RMSD, 
buried solvent-accessible surface area, and interaction 
energies were taken into account, and the steady-state 
trajectories were selected for Molecular Mechanics-Pois-
son Boltzmann Surface Area (MM-PBSA) calculations. 
The resulting energy contributions to binding energy 
are summarized in Table  3. Upon examination of the 
data, it becomes evident that the van der Waals energy 
(ΔEvdw) plays a dominant role in binding for both com-
pounds 1 and 2 with FAK, surpassing electrostatic inter-
action energy (ΔEele), while hydrophobic and electrostatic 
forces provide additional contributions. The calculated 
binding free energy (ΔEMMPBSA) for compound 1 was 
− 77.909 ± 0.603 kJ/mol, indicating a strong binding affin-
ity with FAK, whereas for compound 2, the value was 

Fig. 8 The binding mode of TAE-226 and seven potential FAK inhibitors with FAK
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− 116.772 ± 0.447 kJ/mol, similarly reflecting high binding 
affinity. The above results indicate that the selected com-
pounds can stably bind to the FAK protein.

Conclusion
In this study, we employed a comprehensive strategy 
that integrates machine learning, docking analysis, and 
ADMET predictions to expedite the identification of 
FAK inhibitors specifically tailored for human malig-
nant glioblastoma. Our predictive models exhibited high 
accuracy, with an R2 of 0.892, an MAE of 0.331, and an 
RMSE of 0.467 for protein-level FAK inhibitors, and an 
R2 of 0.789, an MAE of 0.395, and an RMSE of 0.536 for 
U87-MG cell-based compounds. Using these models, we 
efficiently identified 275 potentially active compounds 
out of 5107 candidates based on docking scores lower 
than − 9.000  kcal/mol. Following ADMET assessments, 
16 compounds stood out as potential FAK inhibitors. 
Furthermore, molecular dynamics simulations veri-
fied the stability of the binding interactions between the 
selected compounds and the FAK protein. This study 

demonstrates the utility of combining computational 
methods for the efficient identification of FAK inhibi-
tors from large chemical libraries. Nevertheless, further 
experimental validation through in vitro and in vivo stud-
ies is required to support clinical application.
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Table 3 The calculated binding free energy (kJ/mol) for the 
compound 1-FAK and compound 2-FAK complexes
Terms compound 

1-FAK
compound 
7-FAK

ΔEvdw (van der Waals energy) −118.413 ± 1.109 −189.313 ± 1.377
ΔEele (electrostatic energy) −14.905 ± 0.767 −27.539 ± 0.619
ΔEpol (polar solvation free 
energy)

71.707 ± 1.349 123.149 ± 1.212

ΔEnonpol (non-polar solvation free 
energy)

−16.298 ± 0.126 −23.069 ± 0.177

ΔEMMPBSA
* −77.909 ± 0.603 −116.772 ± 0.447

-TΔS 19.589 ± 2.642 20.366 ± 5.081
ΔGbind* (calculated Gibbs free 
energy)

−58.321 ± 2.852 −96.406 ± 4.933

* ΔEMMPBSA = ΔEvdw + ΔEele + ΔEpol + ΔEnonpol ΔGbind = ΔEMMPBSA -TΔS

Fig. 9 RMSD values obtained from the MD simulation system for the interactions between FAK and (a) compound 1, and (b) compound 2
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