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Abstract
Background  Facing the significant challenge of overcoming drug resistance in cancer treatment, particularly 
resistance caused by mutations in epidermal growth factor receptor (EGFR), the aim of our study was to identify 
potent EGFR inhibitors effective against the T790M/C797S/L858R mutant, a key player in resistance mechanisms.

Methods  Our integrated in silico approach harnessed machine learning, virtual screening, and activity evaluation 
techniques to screen 5105 compounds from three libraries, aiming to find candidates capable of overcoming the 
resistance conferred by the T790M and C797S mutations within EGFR. This methodical process narrowed the search 
down to six promising compounds for further examination.

Results  Kinase assays identified three compounds to which the T790M/C797S/L858R mutant exhibited increased 
sensitivity compared to the T790M/L858R mutant, highlighting the potential efficacy of these compounds against 
resistance mechanisms. Among them, T001-10027877 exhibited dual inhibitory effects, with IC50 values of 4.34 
µM against EGFRT790M/C797S/L858R and 1.27 µM against EGFRT790M/L858R. Further investigations into the antiproliferative 
effects in H1975, A549, H460 and Ba/F3-EGFRL858/T790M/C797S cancer cells revealed that T001-10027877 was the most 
potent anticancer agent among the tested compounds. Additionally, the induction of H1975 cell apoptosis and cell 
cycle arrest by T001-10027877 were confirmed, elucidating its mechanism of action.

Conclusions  This study highlights the efficacy of combining computational techniques with bioactivity assessments 
in the quest for novel antiproliferative agents targeting complex EGFR mutations. In particular, T001-10027877 
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Introduction
Epidermal growth factor receptor (EGFR) is a trans-
membrane protein in the tyrosine kinase receptor fam-
ily [1]. When the extracellular domain of EGFR binds to 
its ligands (such as EGF or TGF-α), it leads to receptor 
dimerization and activation, thereby triggering the intra-
cellular tyrosine kinase activity of EGFR [2]. This acti-
vates a series of downstream signalling pathways, such as 
the MAPK, PI3K/Akt, and JAK/STAT pathways, which 
regulate cell growth, proliferation, migration, and sur-
vival [3].

Aberrant activation of the EGFR signalling pathway is 
associated with the occurrence, progression, and respon-
siveness of various cancers to treatment [4]. For example, 
genetic mutations or amplifications of EGFR are com-
mon in non-small cell lung cancer and are associated 
with EGFR sensitivity to tyrosine kinase inhibitors [3]. 
In addition, other factors related to the EGFR signalling 
pathway, such as miR-20b [5], HOXA3 [6], and JMJD8 
[7], have been found to play roles in cancer that are 
related to the activation of the EGFR signalling pathway.

To inhibit excessive activation of the EGFR signalling 
pathway, fourth-generation EGFR inhibitors have been 
developed (Fig. 1). First-generation EGFR inhibitors (such 
as erlotinib and gefitinib) primarily target activated EGFR 
mutants, although the T790M mutant exhibits resistance 
to these inhibitors [8], and can cause toxic side effects 
when targeting wild-type EGFR [9]. Second-generation 
EGFR inhibitors (such as afatinib and dacomitinib) are 
designed to target the T790M mutation. However, they 
may lead to more side effects [10, 11] (such as rashes and 
gastrointestinal disorders) due to their inhibition of wild-
type EGFR, which has limited their further clinical appli-
cation [12]. Third-generation EGFR inhibitors (such as 
osimertinib) specifically target the T790M mutation and 
have weaker inhibitory effects on wild-type EGFR, and 
therefore, fewer side effects [13–15]. Fourth-generation 
EGFR inhibitors, currently in clinical stages, primarily 
target triple mutants, including C797S (such as Del19/
T790M/C797S and L858R/T790M/C797S) [16]. In con-
clusion, the discovery of novel fourth-generation EGFR 
inhibitors has significant research implications for over-
coming triple mutants mediated by C797S [17].

In recent years, machine learning techniques have been 
widely applied in various fields, such as biology, medi-
cine, and computer science. In the field of drug discov-
ery, machine learning has also been extensively used; for 

example, to overcome drug resistance using machine 
learning models [18], the broad-spectrum active com-
pound ruthenium(II) N-heterocyclic carbenes [19], dia-
rylurea antibiotics [20] and anticancer drugs [21] have 
been discovered.

This study utilized ROC-guided machine learning, vir-
tual screening, and bioactivity evaluations to discover 
potential compounds targeting EGFRT790M/C797S and 
EGFRT790M/C797S/L858R. The DUD-E website was used to 
construct training datasets and evaluate three machine 
learning models, and the best model was ultimately 
selected for potential compound prediction. Receptor 
selection, virtual screening, cluster analysis, and binding 
analysis were performed, and six promising compounds 
were identified. After conducting kinase assays, antipro-
liferative activity tests, AO (Acridine Orange) staining, 
cell cycle experiments, qRT–PCR, and haemolytic activ-
ity evaluations, Compound T001-10027877 was identi-
fied as a novel EGFRT790M/C797S/EGFRT790M/C797S/L858R 
inhibitor. The entire framework of the study is illustrated 
in Fig. 2.

Methods and materials
Data preparation
Dataset preparation for machine learning
First, 100 known active compounds (Table S1) were 
obtained from Selleck (https://www.selleck.cn/) and used 
as a reference to ensure the quality of the datasets used 
for machine learning. Then, based on the SMILES files of 
the active compounds, decoys were obtained according 
to the DUD-E website [22] (https://dude.docking.org/). 
The DUD-E database processed these files and returned 
a pool of decoy molecules. From this pool, we methodi-
cally selected one molecule out of every seven, ultimately 
forming a set of 220 decoys. The active dataset (100 com-
pounds) and the decoy dataset (220 compounds) were 
amalgamated to create a dataset, encompassing a total 
of 320 compounds (Table S2). This consolidated dataset 
was subsequently converted into an SDF file to facilitate 
advanced analysis of its physicochemical properties.

Moreover, the physicochemical properties of the active 
and inactive molecules were predicted using KNIME [23] 
(https://www.KNIME.com/). This process (Figure S1) 
utilized modules such as SDF Reader, RDKit From Mol-
ecule, RDKit Descriptor Calculation, and CSV Writer to 
predict the physicochemical properties of the 320 com-
pounds. Notably, before the predictions were made, a 
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“class” row was added for classification, where the active 
molecules were given a label of 1 and inactive molecules 
were given the label 0. This step is crucial for ensuring 
the accuracy and reliability of both data processing and 
the resultant predictions.

Compound library preparation
First, three compound libraries (including the FDA, Bio-
activity and Specs libraries; over 220000 compounds) 
were uploaded into the cheminformatics software 
KNIME to remove the same molecules and then to pre-
dict the physicochemical properties of those remain-
ing (a similar method was described in section “Dataset 

preparation for machine learning).” These physicochemi-
cal properties were then used as features for further 
machine learning to predict potential compounds.

Machine learning and the prediction of potential active 
compounds
Selecting the best-performing machine learning model
Using the data mining and analysis software Orange3 
[24], we evaluated five machine learning models (KNN, 
SVM, random forest, neural network and gradient boost-
ing) on the training datasets in section  “Dataset prepa-
ration for machine learning”. The machine learning 
parameters were set as follows: (1) 70% of the datasets 

Fig. 2  The machine learning, virtual screening and bioactivity evaluation framework

 

Fig. 1  Features of fourth-generation EGFR inhibitors
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were used for training, and 30% were used for testing; (2) 
the number of cross-validations was set to 10-fold; and 
(3) the other parameters were kept at their default val-
ues. We considered AUC, CA, FA, precision, and recall 
to select the best-performing machine learning model for 
predicting active compounds.

Predicting potential active compounds with the random 
forest model
For this section, we utilized the top-performing machine 
learning model, random forest, to forecast the per-
compound “class” values for the compounds in the FDA 
library and Specs library. It is crucial to clarify that 
these scores, referred to as “class” values, do not carry 
any units. These class values represent the likelihood of 
a compound being classified within a specific category, 
with scores ranging from 0 to 1. Our primary goal was to 
pinpoint compounds whose “class” values were close to 1 
or exceeded 0.5, which indicated a higher probability of 
relevance to our research objectives. Compounds meet-
ing these criteria were subsequently identified as signifi-
cant findings for the forthcoming phase of our virtual 
screening study.

Virtual screening for hit compounds
Docking software and protein selection
Recent research [25] has shown that Vina boasts com-
parable performance to other open source and academic 
software programs, including LeDock [26], Gold [27], 
Moe [28], and Glide [29]. Furthermore, Vina has proven 
to be a valuable and potent tool in numerous docking 
research projects aimed at identifying new active com-
pounds. As a result, Vina was chosen as the docking soft-
ware for this virtual screening.

Our primary aim was to identify compounds capable of 
targeting EGFR mutants, specifically those with dual or 
triple mutations. This objective necessitates the careful 
selection of proteins for virtual screening to ensure the 
identification of highly specific and effective inhibitors. 
Therefore, three proteins, 5ZWJ (EGFRT790M/C797S/V948R 
mutant), 6JRJ (EGFRT790M/C797S mutant) and 6LUD [30–
32] (EGFRL858R/T790M/C797S mutant), were evaluated to 
select suitable proteins for virtual screening. Using these 
three targets, the original protein ligands were extracted 
so that they could be docked into the active site again. 
The RMSD and alignment model were used to evaluate 

the sensitivity of Vina towards these three proteins. 
Finally, the complex with the best RMSD and binding 
affinity was selected as the docking acceptor for the vir-
tual screen. The docking parameters are listed in Table 1. 
The affinity, determined from the docking results, and 
the aligned model were used as rules to select suitable 
docking receptors.

Compound normalization and preparation
In section  “Compound library preparation”, we detailed 
the normalization process for hit compounds identi-
fied through machine learning using KNIME software. 
This workflow (Figure S2) includes several modules: File 
Reader, RDKit Canon SMILES, Duplicate Row Filter, 
RDKit Add Hydrogens, RDKit Generate Coordinates, 
RDKit Optimize Geometry, and SDF Writer. These steps 
systematically prepare the hit compounds by adding 
hydrogens, generating molecular coordinates, optimizing 
geometries, and ultimately saving the data in SDF format. 
This meticulous preparation culminates in converting the 
compound library into PDBQT files, making them ready 
for subsequent applications.

Virtual screening
First, the protein was processed in Discovery Studio 3.0 
to remove water molecules, ions, and the original ligand 
and to correct the residues. Subsequently, the PDBQT 
formats of both the protein and molecules were utilized 
as input according to the parameters specified in the 
configuration file outlined in section  “Docking software 
and protein selection”. Next, the compounds with the 
highest affinity were preserved for cluster analysis using 
Discovery Studio 3.0. Ultimately, the potential molecules 
were chosen based on analysis of both the cluster library 
and binding model. Detailed methodological details of 
the virtual screening can be found in our previous work 
[33–35].

EGFR kinase assay
The kinase inhibition assays were conducted by Heyan 
Biopharmaceutical Technology Co., Ltd. (Wuhan). The 
compounds were tested for their inhibitory activity 
against EGFRT790M/C797S/L858R and EGFRT790M/L858R using 
the ADP-GLO and Lance Ultra methods. Detailed meth-
odological details can be found in our previous work [36].

Antitumour evaluation
To initiate the experiment, four cell lines (A549, H1975, 
H460 and Ba/F3-EGFRL858/T790M/C797S) in the logarith-
mic phase of growth were carefully placed into 96-well 
plates and allowed to incubate for 24 h (the A549, H1975, 
H460 and Ba/F3-EGFRL858/T790M/C797S cells used in our 
study were obtained from Heyan Biopharmaceutical 
Technology Co., Ltd. (Wuhan), as per the guidelines and 

Table 1  Docking parameters of the proteins ZWJ, 6JRJ and 6LUD
Protein ID Central coordi-

nates (x, y, z)
Grid box 
Size (x, y, z)

Num 
modes

Other 
param-
eters

5ZWJ 6.77, 21.42, 12.09 30, 30, 30 9 Default
6JRJ -51.36, 0.69, -22.60 30, 30, 30 9 Default
6LUD -49.73, -0.039, -18.22 30, 30, 30 9 Default
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protocols approved for research). Subsequently, 20 µL 
of compound-containing medium was evenly distrib-
uted into each well, with five different concentrations of 
each compound and three replicates for each concen-
tration. The final concentrations of the six compounds, 
D008-10022050, D008-10206173, D008-10099272, D008-
10135583, T001-10026427, and T001-10027877, were 
100.0, 33.3, 11.1, 3.7, and 1.2 µM. After 72 h of incuba-
tion, MTT solution (5  mg/ml) was added to each well, 
and the plates were allowed to incubate for four hours. 
Once the incubation period ended, the MTT solution 
was removed, and DMSO (150  µl) was added to each 
well. Finally, an enzyme marker was used to measure the 
optical density (OD) of each well at 492 nm.

To determine the antiproliferative effects of the com-
pounds on tumour cells, the measured optical density 
values were used. The inhibition rate (%) was calculated 
using the following formula: (OD control - OD treat-
ment)/(OD control - OD blank) × 100%. Using SPSS 
software, we calculated the half-maximal inhibitory 
concentration (IC50) for each of the compounds on the 
tumour cells.

AO staining analysis
Acridine orange (AO) is a dye that interacts with DNA 
and RNA by intercalation or electrostatic attraction [37]. 
In living cells, AO primarily stains the nucleus green; in 
dead or damaged cells, AO can penetrate the cell and 
bind to DNA, staining the nuclei of dead cells orange 
or red and thus differentiating between living and dead 
cells. For this assay, T001-10027877 was administered at 
concentrations of 0.5, 1, and 2 µM, with 1 µM AZD9291 
serving as the positive control and untreated cells serving 
as the blank control. The entire experimental method has 
been described in our previous research [38].

Cell cycle
H1975 cells were seeded at a density of 4.0 × 105 cells per 
flask and cultured at 37  °C in a 5% CO2 incubator for 
24  h. The drugs were dissolved in 20 µL of DMSO and 
then diluted in culture medium to the desired concen-
trations (AZD9291: 1 µM; and T001-10027877: 0.5 µM 
or 1 µM) before being added to the culture flasks. After 
incubation, the cells were then digested with trypsin, 
centrifuged at 1000  rpm for 5 minutes to remove the 
supernatant, and washed twice with PBS. Next, 10 mL of 
70% ethanol was added at 4  °C to fix the cells for more 
than 24 h. The fixed cells were centrifuged at 2000 rpm 
for 5 minutes, the supernatant was discarded, and the 
cells were washed twice with PBS before 300 µL of PI 
staining solution was added. After incubation in the dark 
at 4 °C for 30 min, the cell cycle distribution was analysed 
using flow cytometry, and key data were retained.

Migration experiment
To conduct the cell scratch assay, log-phase H1975 cells 
were seeded into a six-well plate, with each well receiv-
ing approximately 5 × 105 cells. Before seeding, parallel 
and equidistant lines were marked on the underside of 
the plate to serve as guides for the scratch. After 24  h, 
the cells had reached confluence, and a pipette tip was 
used to create a precise scratch along the premarked 
lines. Subsequently, the plate was rinsed twice with PBS 
to remove any detached cells, and fresh culture medium 
was added. At this stage, the cells were treated with 
T001-10027877 at concentrations of 0.5, 1, and 2 µM, 
and a control group was treated with 1 µM AZD9291. 
Initial observations and photographs of the scratched 
area were taken under a microscope to establish baseline 
data (0  h). Culture was then continued in the incuba-
tor for 24 h. After the plate was retrieved, the cells were 
observed and photographed under a microscope again to 
document the migration and healing process, with par-
ticular attention given to the effects of T001-10027877 
and AZD9291 on cell migration.

Real-time PCR
Using 1 µM AZD9291 as a positive control, fluorescence 
quantitative PCR was utilized to investigate the concen-
tration-dependent inhibition of the substances on EGFR 
and mTOR in H1975 cells. The concentrations of T001-
10027877 used were 0.5 and 1 µM. The procedure was 
described by Sun et al. [38].

Haemolytic activity assay
A haemolytic activity assay was conducted to evaluate 
the potential haemolytic effects of T001-10027877. The 
concentrations tested for T001-10027877 included 0 (as 
a control), 16, 32, 64, 128, and 256 µg/mL. In this assay, 
1% Triton X-100, which is known to cause 100% hae-
molysis of sheep blood erythrocytes, was used as a posi-
tive control to indicate complete cell lysis. Saline solution 
served as a negative control, representing no haemolytic 
activity. The specific experimental method was based on 
our previous research [38].

Results
Machine learning to predict potential compounds
Selection of the machine learning model
To select the best machine learning model, the ROC 
method was used. First, five machine learning models 
(KNN, SVM, random forest, neural network and gradi-
ent boosting) were built with Orange3 to evaluate the 
training set to identify the best model, and the results are 
described in Table 2; Fig. 3. The AUC values can be cal-
culated from Table S3. According to Table 2; Fig. 3, the 
AUCs of the random forest (0.98) and SVM (0.98) models 
were better than those of the other three models (KNN 
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(0.93), neural network (0.97) and gradient boosting 
(0.97)). Among the random forest and SVM models, the 
random forest model also performed better in terms of 
CA, F1, precision and recall. Based on these results, the 
random forest model was selected as the machine learn-
ing model in this study.

Using the random forest model to predict potential 
compounds
After the physicochemical properties of the compounds 
in the library were predicted, the data mining software 
Orange3 was used to construct a random forest model to 
predict the probability of target inhibition. Compounds 
with a positive rate greater than 0.5 were retained, which 
resulted in approximately 5105 compounds (Table S4). 
Then, these compounds were processed by KNIME to 
add hydrogen atoms, generate coordinates and optimize 
the geometry and saved as an SDF file. Finally, the SDF 
file was converted into PDBQT by Open Babel 3.0 for 
further study. The workflow is shown in Fig. 4.

Table 2  Performance of the five machine learning models
Model AUC CA F1 Precision Recall
KNN 0.93 0.88 0.88 0.89 0.88
SVM 0.98 0.95 0.95 0.95 0.95
Random Forest 0.98 0.97 0.97 0.97 0.97
Neural Network 0.97 0.95 0.95 0.95 0.95
Gradient Boosting 0.97 0.93 0.93 0.93 0.93

Fig. 4  Workflow of the random forest model prediction and form conversion of the compound library

 

Fig. 3  ROC curves of five machine learning models: KNN (A), SVM (B), random forest (C), neural network (D) and gradient boosting (E). The AUCs of the 
five machine learning methods are summarized in Fig. 3F
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Virtual screening
Selecting suitable proteins for virtual screening
To select suitable virtual screening software, the three 
mutant proteins were selected as receptors, and the origi-
nal ligand of each was redocked into the active pocket to 
evaluate the RMSD. Thus, the three proteins were used 
as receptors, and AutoDock Vina was used to dock the 
original ligand into the active pocket to evaluate the sen-
sitivity of Vina towards the three proteins. As shown in 
Table 3; Fig. 5, the original ligand in 6JRJ showed better 
affinity (affinity value: -11.4 kcal/mol) than those in 5ZWJ 
(affinity value: -8.7  kcal/mol) and 6LUD (affinity value: 
-8.0 kcal/mol). In addition, among the three ligands, the 
RMSD of the aligned original ligand of 6JRJ (RMSD: 0.18) 
was better than that of 5ZWJ (RMSD: 0.35) but close to 
that of 6LUD (RMSD: 0.07). Taking these results into 
consideration, clearly, protein 6JRJ was more suitable for 
virtual screening than 5ZWJ and 6LUD.

3.2.2 Virtual screening and hit compound selection
After selecting suitable docking software and proteins, 
approximately 5105 compounds were docked into the 
active site of the protein 6JRJ, and after setting a thresh-
old affinity of less than − 9.5  kcal/mol, 284 compounds 
remained (Table S5). Then, cluster analysis was per-
formed to obtain 45 compounds based on the diversity 
of the skeletons. Finally, based on the binding model 
compared with the original ligand of 6JRJ, 6 compounds 
were selected as hit compounds, as displayed in Table 4. 
In addition, the 6 selected compounds were aligned with 
the original ligand of 6JRJ, and nearly all showed con-
formations more similar to the original ligand than did 

the 39 unselected compounds, as displayed in Fig.  6. 
These results indicated that the selected compounds 
may inhibit EGFRT790M/L858R and EGFRT790M/C797S/L858R. 
Finally, all selected compounds were purchased from 
TargetMol (US).

EGFRT790M/C797S/L858R and EGFRT790M/L858R 
inhibition assays and binding model analysis
To prove our suspicions, kinase assays were performed 
to evaluate whether the hit compounds were on tar-
get. Table  5 shows that EGFRT790M/C797S/L858R exhib-
ited increased sensitivity to nearly all the compounds. 
For example, three compounds (D008-10099272, 
D008-10135583 and T001-10027877) inhibited 
EGFRT790M/C797S/L858R with IC50 values of 3.26, 3.25 and 
4.32 µM, respectively, and only one compound inhibited 
EGFRT790M/L858R (T001-10027877: 1.27 µM). Addition-
ally, compared to AZD9291, which served as a positive 
control with IC50 values of 0.64 and 0.012 µM against 
EGFRT790M/C797S/L858R and EGFRT790M/L858R, respectively, 
T001-10027877 clearly demonstrated less potent kinase 
inhibition. However, the unique structural architecture 
of T001-10027877 offers significant potential for future 
structural modifications. Therefore, T001-10027877 
emerged as a promising lead compound for devising 
strategies to counteract EGFR-induced resistance, espe-
cially by targeting the T790M and C797S mutations.

In addition, T001-10027877 was selected for bind-
ing analysis, using D008-10206173 as the negative con-
trol, as shown in Fig.  7. According to recent research, 
the residues M790, L858, S797 and M793 are important 
for EGFR inhibitors to overcome resistance mediated by 
T790M or C797S. Figure 7A shows the robust inhibitory 
activity of AZD9291 against EGFR resistance, as evi-
denced by the formation of four hydrogen bonds with 
the crucial amino acids K745, S797, and M793 and the 
establishment of five pi-cation interactions with other 
amino acids. This demonstrates its high efficacy in target-
ing the EGFR protein. On the other hand, Fig. 7B shows 

Table 3  RMSDs after redocking the original ligand relative to 
that of the original protein
Protein Affinity (kcal/mol) RMSD of the aligned original ligand
5ZWJ -8.7 0.35
6JRJ -11.4 0.18
6LUD -8.0 0.07

Fig. 5  The original ligands (red) aligned with the redocked ligands
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that T001-10027877 exhibits a diverse set of interac-
tions, including hydrogen bonding, hydrophobic, and 
pi-cation interactions, notably enhancing its binding to 
the S797 residue via additional interactions with M790, 
S796, and M793. Despite this broad interaction spec-
trum, the potency of T001-10027877 did not reach that 
of AZD9291.

Further analysis of D008-10206173 (presented in 
Fig.  7C) shows that this compound forms primarily 
hydrophobic and pi-stacking interactions, which are 

inherently weaker than hydrogen bonds. This compari-
son revealed that T001-10027877 demonstrates greater 
activity than D008-10206173 but remains less potent 
than AZD9291. The similar interaction patterns of T001-
10027877 and AZD9291 with the protein, particularly 
in overcoming EGFR resistance caused by the T790M or 
C797S mutation, suggest that T001-10027877, despite 
its reduced potency compared to that of AZD9291, still 
holds potential as a candidate for overcoming resistance 
mediated by specific EGFR mutants. Such integrated 

Table 4  Docking information for 
the 6 selected compounds
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analysis emphasizes the nuanced efficacy of these com-
pounds in targeting EGFR mutations, highlighting the 
ability of T001-10027877 to serve as an alternative for 
combating EGFR resistance.

Antiproliferative activity
Furthermore, the antiproliferative activity of the six 
selected compounds was evaluated by the MTT method 
with four cancer cell lines (A549, H1975, H460 and Ba/
F3-EGFRL858/T790M/C797S). These cell lines were chosen to 
encompass a broad spectrum of EGFR mutation statuses: 
A549 and H460 as wild-type EGFR controls, H1975 rep-
resenting the EGFRT790M/L858R mutations associated with 
acquired resistance to first-generation EGFR tyrosine 
kinase inhibitors, and Ba/F3-EGFRL858/T790M/C797S to 
model compound efficacy against the complex scenario 
involving the T790M, L858R, and C797S mutations. As 
shown in Table 6, all the compounds inhibited the growth 
of A549, H1975, H460 and Ba/F3-EGFRL858/T790M/C797S 
cells to different degrees, with IC50 values ranging from 
1 to 50 µM. Moreover, nearly all the compounds were 

Table 5  Kinase inhibitory activity of six selected compounds 
against EGFRT790M/C797S/L858R and EGFRT790M/L858R

Compd. IC50 (µM)
EGFRT790M/C797S/L858R EGFRT790M/L858R

D008-10022050 >10.0 >10.0
D008-10206173 >10.0 >10.0
D008-10099272 3.26 >10.0
D008-10135583 3.35 >10.0
T001-10026427 >10.0 >10.0
T001-10027877 4.34 1.27
AZD9291a 0.64 0.012
a Used as the positive control

Fig. 7  Analysis of the molecular interactions of AZD9291-6JRJ, T001-10027877-6JRJ and D008-10206173-6JRJ

 

Fig. 6  (A) The original ligand of protein 6JRJ aligned with the 39 unselected compounds. (B) The original ligand of protein 6JRJ aligned with the 6 se-
lected compounds. It is important to highlight that these compounds were chosen from among 45 candidates identified through a clustering process
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more sensitive to the H1975 cell line, which implies 
that these selected compounds could be used as poten-
tial compounds for overcoming resistance. Notably, 
the T001-10027877 showed 1- to 3-fold greater activ-
ity than the positive control compound AZD9291 (4.95, 
1.55, 5.38 and 4.34 µM) against A549, H1975, H460 
and Ba/F3-EGFRL858/T790M/C797S cells, with IC50 values 
of 1.7, 1.55, 3.51 and 4.46 µM, respectively. Notably, 
only T001-10027877 and AZD9291 inhibited the Ba/
F3-EGFRL858/T790M/C797S cell line, with IC50 values of 4.46 
µM and 4.34 µM, respectively. These data indicate that 
compared to AZD9291, T001-10027877 shows similar 
or even superior inhibition of Ba/F3-EGFRL858/T790M/C797S 
cells harbouring the triple mutation, as well as the dou-
ble-mutant H1975 cells. This finding highlights the 
potential of T001-10027877 inhibiting the proliferation 
of cancer cells with the T790M and C797S mutations in 
EGFR.

AO staining assays
Our goal was to identify a potential compound to over-
come the resistance induced by the EGFR mutations 
T790M and C797S. Moreover, T001-10027877 demon-
strated greater inhibition of the EGFR T790M mutant 

than the C797S mutant. Consequently, the H1975 cell 
line was chosen for assessing the antiproliferative effects 
using the AO staining assay at AO concentrations of 0.5, 
1, and 2 µM (Fig. 8). As shown in Fig. 8, the H1975 cells in 
the control group exhibited a normal morphology, emit-
ting circular and dense green fluorescence. Notably, both 
the positive control (AZD9291) and T001-10027877 
induced significant shrinkage of the cell membrane and 
the appearance of sharply defined cell edges, indicating 
the induction of apoptosis. At a concentration of 2 µM, 
T001-10027877 induced apoptosis to the same extent 
as AZD9291. Moreover, as the concentration of T001-
10027877 increased, its ability to induce H1975 cell 
apoptosis also increased.

Effects of T001-10027877 on H1975 cell cycle progression
To explore the impact of Compound T001-10027877 
on cell proliferation, cell cycle analysis was conducted 
in H1975 cells. As shown in Fig.  9, Compound T001-
10027877 induced cell cycle arrest at the G0/G1 check-
point in a dose-dependent manner compared to that in 
the control group. As the concentration of Compound 
T001-10027877 increased, the S phase population 
increased from 17.01 to 28.84%, while the G2/M phase 
population decreased from 29.02 to 11.54%. The propor-
tion of cells in G0/G1 phase did not significantly change. 
Additionally, at a concentration of 1 µM, Compound 
T001-10027877 caused cell cycle arrest at the S check-
point at a rate of 28.84%, which is similar to that of the 
positive control AZD9291 (29.10%).

Inhibitory effects of T001-10027877 on H1975 cell 
migration
A cell scratch assay was used to investigate the effect of 
T001-10027877 on the migratory capacity of H1975 
cells. The cells were treated with 0.5, 1 or 2 µM T001-
10027877 for 24  h and then photographed under a 
microscope. As shown in Fig.  10, after 24  h of culture, 
the cells in the control group significantly migrated 
towards the centre. The cells treated with T001-
10027877 migrated less than those in the control group, 
and this inhibitory effect was more potent at 2 µM 
T001-10027877 than at 0.5 µM T001-10027877. The 

Table 6  The antiproliferative activities of the six selected 
compounds in A549, H460 and Ba/F3-EGFRL858/T790M/C797S cells
Compd. IC50 (µM ± SD)

H1975 A549 H460 Ba/F3-EG-
FRL858/T790M/C797S

D008-
10022050

38.17 ± 3.56 > 50 > 50 > 50

D008-
10206173

> 50 > 50 > 50 > 50

D008-
10099272

41.97 ± 4.69 > 50 > 50 > 50

D008-
10135583

39.92 ± 4.05 15.90 ± 2.73 4.68 ± 0.41 > 50

T001-
10026427

43.14 ± 4.68 34.68 ± 3.61 44.22 ± 4.68 > 50

T001-
10027877

1.70 ± 0.12 1.55 ± 0.13 3.51 ± 0.36 4.46 ± 0.46

AZD9291a 4.951 ± 0.51 4.47 ± 0.45 5.38 ± 0.49 4.34 ± 0.34
a Used as the positive control

Fig. 8  Cell morphology observed by fluorescence microscopy after treatment with T001-10027877
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inhibitory effect of T001-10027877 was similar to that of 
AZD9291 at a concentration of 1 µM. These results dem-
onstrated that T001-10027877 had a dose-dependent 
inhibitory effect on the migratory capacity of H1975 cells 
and exhibited efficacy similar to that of the positive con-
trol AZD9291.

Quantitative reverse transcription polymerase chain 
reaction (qRT–PCR) analysis after treatment with T001-
10027877
To determine the mechanism of action of Compound 
T001-10027877 in tumour cells, fluorescence quanti-
tative PCR was used to examine the EGFR and mTOR 
expression levels in H1975 cells. In untreated H1975 cells, 
the expression levels of EGFR and mTOR were at base-
line levels, as shown in Fig.  11. Treatment with 0.5 µM 
T001-10027877 effectively reduced the relative EGFR 
expression to 0.51 and the relative mTOR expression to 
0.64. Increasing the concentration of T001-10027877 to 
1 µM further decreased the relative EGFR expression and 
mTOR expression to 0.35 and 0.53, respectively, demon-
strating dose-dependent inhibition. At 1 µM, the positive 
control AZD9291 reduced the relative EGFR expression 
to 0.28 and that of mTOR to 0.52, slightly surpassing the 
effects of T001-10027877 in terms of EGFR suppression 

but comparably affecting mTOR expression. These results 
highlight the potent, dose-responsive inhibitory effect 
of T001-10027877 on the EGFR and mTOR signalling 
pathways, as T001-10027877 shows marked selectivity 
for EGFR at relatively high concentrations. Furthermore, 
T001-10027877 demonstrated similar selectivity and 
efficacy towards EGFR as the positive control AZD9291, 
indicating comparable levels of expression and activity.

Haemolytic activity of T001-10027877 at various 
concentrations
Moreover, haemolytic activity was also considered. As 
shown in Fig.  12, the haemolytic activity values were 0, 
1.69, 3.78, 7.13, 7.84 and 8.76 for T001-10027877 at 0, 
16, 32, 64, 128 and 256  µg/mL, respectively. All of the 
haemolytic activity values at various concentrations were 
less than 9%, which means that compared with the con-
trol, 1% Triton X, T001-10027877 was safe in terms of 
haemolytic activity for the treatment of cancer cells.

Discussion
Herein, we emphasize the multifaceted evaluation of 
T001-10027877, which spans from machine learning 
model selection to detailed molecular interaction analy-
sis, highlighting the potential of this compound as a novel 

Fig. 10  Dose-dependent inhibition of H1975 cell migration by Compound T001-10027877: A comparative study with AZD9291

 

Fig. 9  Compound T001-10027877 induces H1975 cell cycle arrest in a dose-dependent manner
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agent for overcoming EGFR-mediated resistance in can-
cer therapy.

Initially, the selection of the random forest model via 
the ROC method, as documented in Table 2; Fig. 3, pro-
vided a solid foundation for computational screening. 
This model outperformed the others, including SVM, 
KNN, neural network, and gradient boosting, by demon-
strating superior accuracy in predicting compounds with 
potential inhibitory activity against EGFR mutants. Such 
precision led to the identification of approximately 5105 
compounds, a testament to the model’s efficacy in navi-
gating the complex chemical space of potential inhibitors.

Redocking studies further refined our search, pinpoint-
ing protein 6JRJ as the most suitable receptor for virtual 

screening due to its affinity for and sensitivity towards 
the ligands, as shown in Table  3; Fig.  5. This specificity 
in target selection was crucial for identifying 284 com-
pounds with significant affinity, which were further 
narrowed down to six hit compounds through cluster 
analysis, emphasizing the importance of structural diver-
sity in the selection process.

A comparative analysis of these compounds revealed 
that T001-10027877 had notable inhibitory activ-
ity, particularly against the EGFRT790M/L858R and 
EGFRT790M/C797S/L858R mutants, showing efficacy similar 
to or superior to that of the positive control, AZD9291. 
This is supported by molecular interaction studies 
(Fig. 7A and B), where T001-10027877 exhibited a com-
prehensive interaction profile with key EGFR residues, 
suggesting its ability to effectively inhibit EGFR-driven 
cell proliferation.

Further experimental validation via kinase assays 
and antiproliferative activity tests across multi-
ple cancer cell lines (A549, H1975, H460, and Ba/
F3-EGFRL858/T790M/C797S) confirmed the potent activity 
of T001-10027877. Notably, T001-10027877 demon-
strated 1- to 3-fold greater activity than did AZD9291 
in certain assays, highlighting its potential to serve as a 
more effective therapeutic agent.

The antimigratory effects of T001-10027877, as evi-
denced by the cell scratch assay, and its ability to induce 
cell cycle arrest, as demonstrated via cell cycle analy-
sis, further substantiated the efficacy of this novel com-
pound. These results, together with the fluorescence 
quantitative PCR findings, revealed that T001-10027877 
dose-dependently inhibited EGFR and mTOR expression, 
revealing its targeted mechanisms of action against can-
cer cell proliferation.

Finally, the evaluation of haemolytic activity confirmed 
the safety of T001-10027877, indicating that it is a viable 

Fig. 12  Evaluation of the haemolytic safety of Compound T001-
10027877: A dose‒response study

 

Fig. 11  Quantitative RT‒PCR analysis of EGFR and mTOR expression in H1975 cells treated with T001-10027877
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candidate for further development. The minimal haemo-
lytic effects of this compound, even at high concentra-
tions, align with the requirements for a therapeutically 
effective yet safe anticancer agent.

In summary, the comprehensive assessment of T001-
10027877, from computational predictions to experi-
mental validation, showcases its promise as a novel 
therapeutic option for overcoming EGFR-mediated 
resistance. Its potent efficacy, coupled with its favourable 
safety profile, makes it a compelling candidate for further 
investigation and potential clinical application in cancer 
therapy.

Conclusion
In this study, an in silico fusion method, which included 
machine learning, virtual screening and clustering, 
combined with activity evaluations was used to identify 
active EGFR inhibitors targeting EGFRT790M/C797S/L858R. 
First, ROC-guided machine learning was used to identify 
nearly 5105 compounds from three compound librar-
ies (over 200000 compounds). Second, virtual screening 
and binding model analysis were performed to obtain 
six potential compounds. In addition, the kinase assay 
showed that EGFRT790M/C797S/L858R exhibited greater sen-
sitivity to these six compounds than EGFRT790M/L858R. 
Among them, Compound T001-10027877 inhibited 
both EGFRT790M/C797S/L858R and EGFRT790M/L858R, with 
IC50 values of 4.34 and 1.27 µM, respectively, which 
means that T001-10027877 could overcome the EGFR 
resistance mediated by the T790M or C797S mutations. 
Moreover, the antiproliferative effects of the six hit com-
pounds were also investigated, and T001-10027877 
showed the best anticancer activity in the H1975, A549, 
H460 and Ba/F3-EGFRL858/T790M/C797S cell lines, with IC50 
values of 1.7, 1.5, 3.5 and 4.46 µM, respectively. Further-
more, AO staining and cell cycle experiments revealed 
that Compound T001-10027877 could induce H1975 
cell apoptosis in a concentration-dependent manner. 
Moreover, the haemolytic activity evaluation suggested 
that the Compound T001-10027877 is safe for further in 
vivo study.
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