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Abstract 

In this manuscript, the effectiveness of multivariate and univariate tools in conjunction with spectrophotometric 
techniques was evaluated for the concurrent analysis of ciprofloxacin (CI) and ornidazole (OR) in prepared mixtures, 
tablets, and human serum. The artificial neural network was chosen as the multivariate Technique. Bayesian regulariza-
tion (trainbr) and Levenberg–Marquardt algorithms (trainlm), were constructed and trained using feed-forward back-
propagation learning. The optimal logarithm was determined based on mean recovery, mean square error of predic-
tion (MSEP), relative root mean square error of prediction (RRMSEP), and bias-corrected MSEP (BCMSEP) scores. Trainbr 
outperformed trainlm, yielding a mean recovery of 100.05% for CI and 99.84% for OR, making it the preferred algo-
rithm. Fourier self-deconvolution and mean-centering transforms were chosen as the univariate Techniques. Fourier 
self-deconvolution was applied to the zero-order spectra of ciprofloxacin and ornidazole by electing an appropriate 
full width at half maximum, enhancing peak resolution at 380.1 nm and 314.2 nm for CI and OR, respectively. Mean 
centering transform was applied to CI and OR ratio spectra to eliminate constant signals, enabling accurate quantifi-
cation of CI and OR at 272.0 nm and 306.2 nm, respectively. The introduced approaches were optimized and validated 
for precise CI and OR analysis, with statistical comparison against the HPLC method revealing no notable differ-
ences. The sustainability of these approaches was confirmed through the green certificate (modified eco-scale), AGP, 
and whiteness-evaluation tool, corroborating their ecological viability.

Keywords  Artificial intelligence, Bayesian Regularization, Fourier self-deconvolution, Green certificate, Levenberg–
Marquardt, Mean centering

Introduction
Vaginal dysbiosis poses a significant challenge in obstet-
rics and gynecology, owning a prevalence of 10–30% in 
women worldwide. Vaginal dysbiosis is common over 
pregnancy and several studies have noted a relation 
between bacterial vaginosis and premature birth in addi-
tion to miscarriage and low birth weight [1, 2]. Recent 
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research highlights the therapeutic potential of a cipro-
floxacin HCl and ornidazole combination for manag-
ing bacterial vaginosis and vaginal dysplasia associated 
with mixed anaerobic and aerobic bacterial presence [3]. 
Another study underscores the clinical efficacy and tol-
erability of an antimicrobial-antiprotozoal combination 
comprising ornidazole and ciprofloxacin in postoperative 
complications, cystitis, and overactive bladder treatment 
[4].

Ornidazole (OR), Fig.  1, exhibits bactericidal activity 
against anaerobic bacterial infections such as amoebae 
and trichomonas, disrupting microbial DNA synthesis 
[5, 6]. Ciprofloxacin HCl (CI), Fig. 1, is a broad-spectrum 
antibacterial agent effective against respiratory, urinary, 
and skin infections, inhibiting bacterial DNA replication 
[7, 8].

Previous literature has reported the estimation of cip-
rofloxacin and ornidazole combination in tablet form 
using HPLC [9–12] and spectroscopy [13–16]. Concur-
rent estimation in spiked serum has been documented 
using TLC [17] and HPLC [18] only.

Multivariate technique represented by an artificial neu-
ral network (ANN) is of significant importance. ANN 
eliminates the error resulting from employing a single 
wavelength regression and is therefore robust. Also, the 
various concentration ratios covered by ANN are highly 
broad and can include future combinations of ratios 
created by pharmaceutical corporations. Univariate 

techniques like Fourier self-deconvolution, and mean 
centering are distinguished by simplicity in resolving the 
interfering drugs without requiring complicated math-
ematical procedures or affecting the signal-to-noise ratio.

This study pioneers the employment of artificial intel-
ligence via two logarithmic methods (trainbr, trainlm), 
Fourier self-deconvolution, and mean centering in spec-
trophotometric analysis for concurrent quantification of 
CI and OR in pharmaceutical formulations and human 
serum without complex sample preparation or separa-
tion. The strengths and limitations of these approaches 
are debated comprehensively, highlighting their perfor-
mance. Furthermore, a statistical comparative study was 
conducted between the introduced approaches and the 
HPLC approaches to assure efficacy.

In alignment with the role analytical laboratories play 
in environmental protection by monitoring pollutants, 
this work embraces the principles of green chemistry, 
emphasizing operator safety, responsible solvent usage, 
waste reduction, and energy efficiency [19, 20]. This 
endeavor thus provides eco-friendly, intelligent, and 
straightforward methodologies for routine CI and OR 
analysis.

Theory
Artificial neural network (ANN)
An Artificial Neural Network (ANN) is an effective 
model that simulates the functioning of the human brain’s 
neural networks. Neurons, the basic units of ANN, struc-
turally resemble human nerve cells. Training an ANN 
involves adjusting its weights and biases to attain a spe-
cific objective as illustrated in Fig.  2 [21]. In this study, 
a feed-forward network trained with backpropagation 
[22] was used. Different learning algorithms exist for 
neural networks, including Levenberg–Marquardt back-
propagation, Bayesian regularization backpropagation, 
Resilient backpropagation, and One-step secant back-
propagation, among others. For this study, we employed 
two algorithms: Bayesian regularization backpropagation Fig. 1  UV spectra and chemical structure of CI and OR

Fig. 2  Network training method
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and Levenberg–Marquardt backpropagation. Bayesian 
regularization reduces squared errors and weight combi-
nations, ensuring a generalized network. It is robust and 
does not demand validation [23]. Levenberg–Marquardt, 
introduced by Donald Marquardt, addresses nonlinear 
least squares issues and enhances second-order training 
speed without necessitating the computation of the Hes-
sian matrix, as in Newton’s algorithm [24].

Fourier self‑deconvolution (FSD)
This function in the spectra software is an advanced 
combination of the Fourier self-deconvolution tech-
nique (FSD) proposed by Kauppinen et  al. and the 
Finite Impulse Response Operator edited by Jones and 
Shimokoshi [25]. Given E(ν) as the actual spectrum, M(ν) 
as the measured spectrum, and G(ν) as the spectrum 
altered by instrumental measurement, the deconvoluted 
spectrum is expressed through a Fourier transformation 
(F) as follows:

Here, D(x, L) is the tapering function, and exp{πσ x} 
represents the Lorentzian curve’s half-width of G(ν).

To optimize computation time, an algorithm that com-
bines the FSD and FIRO techniques is utilized, where the 
FIRO technique includes extending the exp{ πσ x}expres-
sion in the previous equation on the spectrum area for 
diverse types of tapering functions. The deconvolution 
filter applied to the spectrum takes the form:

Here, D(x, L) and D′(v, FL) are constants related to the 
Bessel function, and L and FL are automatically deter-
mined values. The FSD algorithm built within the Spectra 
Manager software is a powerful technique for resolving 
overlapping peaks, achieved by applying an appropriate 
full width at half maximum (FWHM) to the spectrum, 
producing a deconvoluted spectrum with zero-crossing 
points (λzero). The concentration of each component is 
detected then by the constructed linear equation between 
the signal at λzero and the analogous concentrations.

Mean centering (MC)
Mean centering is a data transformation technique via 
MATLAB® designed to handle highly overlapped signals 
by eliminating redundant signals while preserving vari-
able signals [26].

Considering a vector with 3-dimensional:
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In a mixture consisting of X and Y components, the 
absorbance (A) is expressed as:

Where (a) represents the absorptivity factor, and (C) 
represents the component’s concentration.

When dividing Eq. (1) by component Y spectrum, we 
obtain:

Utilizing MATLAB®, mean centering is applied to the 
ratio spectra, resulting in:

The constant’s mean centering value is zero. Equa-
tion  (3) illustrates that after mean centering, the mix-
ture signal is solely related to component X.

Experimental
Instruments and software
The JASCO V-650 spectrophotometer was employed 
for D0 spectrum scanning in the range of (200–
400)  nm. Spectra Manager® software, version 2 by 
JASCO Corporation, was used for Fourier self-decon-
volution. MATLAB® 2021a (version 8.6) was utilized 
for the ANN and mean-centering approaches.

Materials and solvent

–	 Ciprofloxacin HCl and Ornidazole were obtained 
from Chongqing Chemdad CO., Ltd., CHINA, with 
purities of 99.35 ± 0.73 and 99.16 ± 0.62, respec-
tively.

–	 Methanol was procured from Panreac, Spain.
–	 Cifran-OZ® film-coated tablets, each labeled to 

contain 500 mg of ornidazole and ciprofloxacin 
HCl, were manufactured in India by Sun Pharma 
Laboratories Ltd., with batch no. SXC0964A.
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Standard solutions

–	 Stock standard solutions of 1000  μg/ml were pre-
pared for both CI and OR in methanol.

–	 Working solutions of 50  μg/ml were prepared for 
both CI and OR in methanol.

Preparing tablet sample
Ten Cifran-OZ® tablets were weighed accurately, and 
crushed, and an amount equivalent to 10 mg of each CI 
and OR was dissolved in a 50  ml standard flask using 
20 ml of methanol. The solution was sonicated for 5 min, 
filtered into a 50 ml standard flask, and topped up with 
methanol. Appropriate dilution was performed to pre-
pare the sample solution.

Preparing serum sample
The serum sample was human serum collected from 
three healthy volunteers, then treated as follows: 0.1 ml 
of serum sample was mixed with various concentrations 
of CI and OR in centrifugation tubes. The volume was 
adjusted to 5  ml using methanol, and the mixture was 
vortexed for 2 min and then centrifuged at 5000 rpm for 
10 min. The centrifuged serum sample was filtered utiliz-
ing a 0.22 µm Millipore filter and measured against a pro-
duced blank under the aforementioned conditions except 
for the existence of the drugs.

Procedures and calibration
A series of methanolic solutions were prepared in the 
laboratory, spanning concentrations from 2 to 15  μg/
ml for CI and 3–25 μg/ml for OR. These solutions were 
recorded against methanol and saved in the spectra 
software.

Artificial neural network (ANN)
For trainbr, thirty-two mixtures containing varying 
ratios of CI and OR, within the concentration ranges of 
2–15 μg/ml for CI and 3–25 μg/ml for OR, were prepared 
for the training set (Table 1). Additionally, a test set com-
prising 10 mixtures of CI and OR was prepared to evalu-
ate the trained artificial networks. For trainlm, thirty 
mixtures of CI and OR were utilized as the training test, 
6 mixtures as the validation set, and an additional 6 mix-
tures as the test set.

Fourier self‑deconvolution method
The recorded spectra of CI and OR were subjected to Fou-
rier self-deconvolution (FSD) using a full-width half-max-
imum (FWHM) of 70. A calibration plot was established 

between the signal values at 280.1 nm for CI and 314.2 nm 
for OR, corresponding to their respective concentrations.

Mean centering method
The spectra of CI and OR were divided by the spectra of 
CI (10 μg/ml) and OR (20 μg/ml), respectively. The result-
ing ratio spectra were subjected to mean centering. Lin-
ear equations were developed between the signals at 
272.0 nm for CI and 306.2 nm for OR, and their respective 
concentrations.

Results and discussion
Upon analyzing Fig.  1, it is apparent that the D0- spec-
tra associated with CI and OR overlap in a manner 
that hampers the independent quantification of each 

Table 1  Concentrations of training mixtures in μg/ml

Mix no. CI μg/ml OR μg/ml

1 2.0 3.0

2 3.0 5.0

3 5.0 10.0

4 8.0 15.0

5 2.5 10.0

6 2.0 5.0

7 5.0 15.0

8 3.0 3.0

9 5.0 5.0

10 8.0 10.0

11 10.0 3.0

12 15.0 0.0

13 3.0 10.0

14 2.0 10.0

15 3.0 15.0

16 5.0 20.0

17 8.0 25.0

18 3.0 10.0

19 5.0 15.0

20 2.0 20.0

21 3.0 25.0

22 5.0 15.0

23 8.0 15.0

24 10.0 5.0

25 2.0 15.0

26 3.0 10.0

28 5.0 15.0

28 8.0 20.0

29 2.0 25.0

30 3.0 3.0

31 5.0 25.0

32 8.0 3.0
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compound. As a solution, this study introduces three 
approaches to permit the accurate quantification of indi-
vidual compounds. The potential of ANN was explored 
to resolve the CI and OR overlap within the UV range 
(279.0–316.0) nm at a 0.5  nm interval. The ANN input 
consisted of an absorbance matrix (75 × 32), while the 
output matrix (32 × 2) represents the concentrations for 
CI and OR. The Fourier Self-Deconvolution (FSD) tech-
nique’s efficiency was assessed through variations in the 
Full Width at Half Maximum (FWHM) for CI and OR 
spectra within the UV range (200.0–400.0) nm using a 
0.1 nm interval. Additionally, the Mean Centering (MC) 
approach was applied to CI and OR ratio spectra within 
the UV range (240.0–290.0) nm for CI and (260.0–340.0) 
nm for OR using a 0.1 nm interval.

ANN
To ensure the correctness of the ANN training process 
and minimize errors, it was crucial to carefully select 
noise-free and reliable absorbance values for input. In this 
context, signal points within the range of (279.0–316.0) 
nm were chosen as the network’s inputs, while other 
spectral points were disregarded. For the ANN training, 
two algorithms, trainbr, and trainlm, were employed, and 
three network configurations were considered for each 
component, consisting of (1 hidden layer, 1 neuron), (1 
hidden layer, 2 neurons), and (2 hidden layers, 2 neu-
rons). Activation functions TANSIG and PURELIN were 
applied in the hidden and output layers, respectively. The 
output layer of all networks contained only 2 neurons to 
accommodate the two compounds in the mixtures. It has 
been determined that training networks with one hidden 
layer and two hidden layers are sufficient to address the 
spectral interference of CI and OR. Further hidden layers 
could potentially exacerbate the issue of overfitting [27]. 
The performance of each network was evaluated using 
various parameters, including mean recovery%, mean 
square error of prediction (MSEP), relative root mean 
square error of prediction (RRMSEP), and bias-corrected 
MSEP (BCMSEP) [28].

The formulas utilized for the aforementioned param-
eters are as follows:

MSEP =
∑n

i=1(c
′ − c)2

n

RRMSEP =
100

c

√
MSEP

BCMSEP =
∑n

i=1(c
′ − c)2 −

[
∑n

i=1(c
′ − c)2/n

]

n− 1

Here, c’: represents the predicted concentration, c: rep-
resents the true concentration, c̅: is the average of true 
concentrations, and n is the sample number.

Notably, all trained networks performed well except the 
(1 hidden layer, 1 neuron) configuration, which exhib-
ited suboptimal outcomes (Figs.  3, 4). Trainbr demon-
strated fewer errors in performance with superior results 
in terms of MSEP, BCMSEP, and RRMSEP compared to 
trainlm. Also, as noticed from Figs.  5, 6, 7, 8 the slope 
value of 1 in trainbr diagrams indicates the excellent 
performance of the trained net, unlike trainlm, which 
exhibits a slope value of less than 1 in test diagrams of 
CI. While there was no notable difference between 
trainbr with (1 hidden layer, 2 neurons) and trainbr with 
(2 hidden layer, 2 neurons), the former was chosen for 
the simultaneous detection of CI and OR in tablet and 
serum samples. As depicted in Fig.  5 the training and 
test diagrams of trainbr (1 layer, 2 neurons) for CI and 
OR reveal an excellent R-value. Furthermore, the mean 
recovery% and RMSE scores provided in Table 2 validate 
the algorithm’s exceptional performance. These satisfac-
tory results were achieved within 81 epochs, where the 
gradual decrease of training and test lines confirms the 
absence of overfitting as indicated in Fig. 9.

Fourier self‑deconvolution (FSD)
The FSD technique is a significant processing tool that 
enhances the resolution of overlapping spectra by adjust-
ing the peak widths. This adjustment allows for achieving 
zero intersection points for each spectrum, thereby ena-
bling the quantification of individual compounds within 
the drug mixture. Unlike derivative transformation-based 
methods [29–31], FSD maintains the signal-to-noise ratio 
and avoids introducing additional noise. To determine 
the appropriate Full Width at Half Maximum (FWHM) 
for deconvolution, various FWHM values (10, 30, 50, 
70) were applied to the individual spectra of CI and 
OR within the UV range (200–400) nm using a 0.1  nm 
interval. The optimal FWHM for deconvolution was 
determined to be 70, as it allowed for the measurement 
of each drug without intervention from the other com-
pound. This was achieved at 280.1 nm for CI (Fig. 10) and 
314.2 nm for OR (Fig. 11). The following linear equations 
are utilized to estimate the concentration of each drug at 
its elected wavelength: for CI Y = 0.2732 X + 0.0031, for 
OR Y = 0.0778 X + 0.002.

Mean centering(MC)
This tool of data transformation utilizing MATLAB® 
has the feature of picking the felicitous wavelength for 
measurement in an expansive range of wavelengths 
without being restricted to choosing zero points. To 
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Fig. 3  MSEP (a), RRMSEP (b), and BCMSEP (c) results for test samples of CI and OR

Fig. 4  Mean recovery% results for test samples of CI and OR
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apply this method two criteria were tested: the divi-
sor concentration and wavelength range to perform 
mean centering. The best divisor of CI and OR which 
accords the best sensitivity and precision were 10  μg/
ml of CI and 20  μg/ml of OR, also many wavelength 
ranges were tried to elect the best range that fulfills 

the best recovery% scores of CI and OR from the pro-
duced mixes as in Table  3, and the elected ranges to 
accomplish the estimating operation of CI and OR 
were (240.0–290.0) nm for CI (Fig.  12a) and (260.0–
340.0) nm for OR (Fig.  12b). After applying the mean 

Fig. 5  Training, and test diagrams of trainbr (1 layer, 2 neurons) for CI and OR

Fig. 6  Training, and test diagrams of trainbr (2 layers, 2 neurons) for CI and OR
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centering function on the produced ratio spectra of 
CI and OR through the elected wavelength ranges, the 
λmax at 272.0  nm was elected to detect CI using the 

following equation Y = 0.2091 X + 0.0026, and the λmax 
at 306.2 nm was elected to detect OR utilizing the fol-
lowing equation Y = 0.0571 X + 0.0042.

Fig. 7  Training, validation, and test diagrams of trainlm (1 layer, 2 neurons) for CI and OR

Fig. 8  Training, validation, and test diagrams of trainlm (2 layers, 2 neurons) for CI and OR
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Strengths points and limitations of the elaborated tools
Despite the satisfactory and convergent results attained 
through the elaborating of the three tools for the syn-
chronous quantification of CI and OR, these tools differ 
from each other by several points that are epitomized in 
Table 4 to display the strengths points, and limitations of 
each tool.

Confirmation of environmental sustainability
In the current era, the development of analytical meth-
ods must prioritize environmental considerations, aim-
ing to uphold ecological balance, minimize waste, reduce 
energy consumption, and maintain economic viability. 
Previous research has introduced various tools for eval-
uating the sustainability of methods. In this study, the 

Table 2  Prediction outcome of test mixes utilizing trainbr (1 layer, 2 neurons)

Test mixture Real μg/ml Expected μg/ml Recovery%

CI OR CI OR CI OR

1 0.0 10.0 0.01 9.89 – 98.93

2 10.0 15.0 9.99 15.28 99.87 101.84

3 5.0 10.5 4.93 10.64 98.58 101.30

4 6.0 12.0 5.91 11.73 98.47 97.76

5 8.0 8.0 8.19 7.90 102.42 98.70

6 10.0 20.0 10.18 19.86 101.81 99.29

7 12.0 4.0 12.29 3.92 102.41 98.02

8 12.0 6.0 11.89 6.07 99.09 101.25

9 15.0 5.0 14.87 5.13 99.11 102.54

10 10.0 10.0 9.87 9.88 98.73 98.79

Recovery% 100.05 99.84

RMSE 0.073 0.077

Fig. 9  Best training performance of trainbr (1 layer, 2 neurons) for CI and OR predictions in the produced mixes
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sustainability of the proposed approaches was affirmed 
through the creation of greenness and whiteness profiles 
using the following methodologies:

Green certificate (modified Eco‑scale)
A new amendment of the eco-scale tool addresses diverse 
analytical evaluation aspects like reagent volume, hazard, 
power intake, occupational danger, and generated quan-
tity of wastes in the analysis. This tool relies on a pen-
alty points system and a specific mathematical process 
to classify the analytical approaches into seven classes 

according to the final penalty points score; Fig.  13. The 
penalty points of utilized solvent volume and generated 
waste are estimated via the following equation:

where a = 0.61 ± 0.05, b = 0.31 ± 0.02 for solvent con-
sumption and a = 1.50 ± 0.08, b = 0.40 ± 0.02 for produced 
waste. The obtained penalty points for solvent consump-
tion should be multiplied by the penalty points of hazard 
[32].

y = a× xb

Fig. 10  Applying FSD on the UV-spectra of CI(____) 2–15 μg/ml and OR(----) 10 μg/ml using FWHM: 70, displaying zero-crossing point for CI 
estimation

Fig. 11  Applying FSD on the UV spectra of OR(____) 3–25 μg/ml and CI(----) 10 μg/ml using FWHM: 70, displaying zero-crossing point 
for OR estimation
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AGP Tool
This tool evaluates the ecological impact of the proce-
dure based on five criteria: health impact, procedural 

safety, energy consumption, waste production, and eco-
logical hazards. The evaluation is represented through a 
pentagram divided into five segments, as illustrated in 
Fig.  13. The color-coded segments, ranging from green 
to yellow and red, indicate the varying degrees of eco-
logical impact–high, moderate, and low. Health and 
safety impacts are estimated based on the red and blue 
segments of the solvent’s NFPA pictogram, respectively. 
Waste and ecological hazards are evaluated by consider-
ing generated waste during the operation, while energy 
consumption is estimated based on device usage [33].

Whiteness profile
The whiteness profile of the tools was assessed using the 
RGB 12 algorithm. This method involved populating an 
Excel template worksheet that comprises three distinct 
tables: red, green, and blue. Each table corresponds to 
specific criteria. The green table summarizes factors such 
as trueness, precision, detection, and quantification limit. 
The red table focuses on safety, toxicity, and energy con-
sumption, while the blue table addresses cost, speed, and 
simplicity. The amalgamation of these colors produces 
white, symbolizing the extent of brightness associated 
with the method, as illustrated in Fig.  13. By assigning 
a score from 0 to 100 to each criterion in the Table  (0 

Table 3  Effect of wavelength ranges on the recovery results of 
the prepared mixtures of CI and OR

a The elected wavelength ranges for mean centering transforms

Wavelength range Linear equation Recovery% Drugs 
concentration (μg/ml) 
CI: OR

10:5 5:15 3:10

CI

240–290 nma Y = 0.2091X + 0.0026 99.42 98.92 98.10

230–300 nm Y = 0.2630X + 0.0030 95.70 96.61 96.41

260–290 nm Y = 0.1206X + 0.0015 96.07 95.18 92.98

240–325 nm Y = 0.2943X + 0.0037 95.96 92.08 92.14

250–300 nm Y = 0.2118X + 0.0028 97.03 95.78 96.82

OR

260–340 nma Y = 0.0571X + 0.0042 98.13 99.12 101.09

290–330 nm Y = 0.0231X + 0.0030 96.27 93.33 97.06

240–340 nm Y = 0.0609X + 0.0040 104.21 103.94 104.80

260–330 nm Y = 0.0581X + 0.0041 97.02 97.15 103.06

280–340 nm Y = 0.0401X + 0.0037 98.37 93.71 97.03

Fig. 12  Applying the mean centering function on the ratio spectra of CI (a) and OR (b)
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representing the worst result and 100 signifying a well-
fitted method), the final whiteness score, ranging from 0 
to 100, is automatically generated [34].

Validation
Validation of ANN
The self-validating nature of ANN is a key advantage, 
and several parameters were computed to assess predic-
tion accuracy [28]. Prediction accuracy was evaluated via 
MSEP and RRMSEP, while prediction precision was eval-
uated using BCMSEP. The computed parameters yielded 
exceptional scores, as summarized in Table 5.

Validation of fourier self‑deconvolution and mean 
centering methods
The validation of the FSD and MC approaches adhered 
to ICH guidelines [35] and encompassed the following 
aspects:

Linearity
Calibration plots were established for both CI and OR by 
plotting the signal against their corresponding concen-
trations. Remarkable linearity was achieved with an R2 
value exceeding 0.999, as detailed in Table 6.

Table 4  The strengths points and limitations of the elaborated Tools

Tool Benefits Limitations

ANN • Eliminates the error reverting to employing a single wavelength 
regression such as in univariate UV approaches
• Does not demand a monotonous validation process
• Can be trained on diverse ratios of mixes

• Needs many tests to obtain accurate prediction outcomes, which 
needs to adjust many parameters like transfer functions, layers, neuron 
number, goal, and the learning rate
• The improper adjustment of one of the previous parameters may lead 
to learning errors or the occurrence of overfitting issues

FSD • Enhances the overlaid spectra resolution
• Does not impact the signal/noise ratio
• Doesn’t require a special program or (cos, sin) transformation for per-
forming like in Discrete Fourier Transform

• Crucial measurements of the signals at the selected wavelength
• Influenced by the increment of wavelength

MC • The mean-centered signals are measured at the maximum points, 
for higher sensitivity
• Does not impact the signal/noise ratio

• The computed arithmetic mean is greatly affected by skewed data
• Needs to test the best divisor concentration and the best wavelength 
range for the mean centering process

Fig. 13  Evaluation of the environmental sustainability of the developed approaches using green certificate, AGP, and whiteness assessment

Table 5  Construction and Validation Parameters of the ANN 
approach

a Calculated for CI and OR at concentrations of (5 µg/mL, 6 µg/mL, 8 µg/mL, 
10 µg/mL, 12 µg/mL, 15 µg/mL)

Drug CI OR

Net 1 layer, 2 neurons

Transfer functions TANSIG-PURELIN

Algorithms Bayesian regularization

Regression equation Y = 1 X + 0.00094 Y = 1 X + 0.0012

MSEPa 0.02257 0.02517

RRMSEPa 1.70743 1.57856

BCMSEPa 0.02451 0.02749
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Detection limit (DL) and quantitation limit (QL).
DL and QL were computed as described in ICH guide-
lines, utilizing the slope of the calibration plot and the 
standard deviation of the response. Exceptional DL and 
QL values underscored the approaches’ sensitivity.

Accurac
Accuracy was assessed by computing the mean recov-
ery % for three analyzed concentrations of pure CI and 
OR, employing their corresponding linear equations. 
Accuracy was further ensured in commercial formula-
tions utilizing the technique of standard additions. The 
recovery values, inserted in Tables 6, 8, demonstrated the 
approaches’ accuracy.

Precision
Intraday and inter-day precision were evaluated by com-
puting the RSD% for three analyzed concentrations 

of pure CI and OR on a single day and over three days, 
respectively. RSD% values below 2 indicated excellent 
precision, as detailed in Table 6.

Specificity
Diverse mixtures with varying OR and CI ratios, as well 
as tablet samples, were subjected to analysis via the FSD 
and MC approaches. The recovery reported in Tables 7, 8 
substantiated the excellent specificity of the approaches 
for estimating CI and OR concentrations in both in-lab 
mixtures and tablet samples.

Statistical evaluation
Statistical comparisons were conducted among the pro-
posed approaches, as well as against the reported HPLC 
method. T-test, F-test, and One-way ANOVA were 
employed for this purpose. The scores indicated no nota-
ble differences between the proposed approaches and the 
reported HPLC approach, as summarized in Tables 9, 10. 
The statistical analyses were performed utilizing the data 
analysis function in Excel 2019.

Application on tablet and serum samples
The established ANN, FSD, and MC approaches were 
applied to tablet formulations and serum samples to pre-
dict the actual concentrations of CI and OR. The high 
linearity range of the elaborated approaches permitted 
the estimation of CI and OR in human serum, where 
Cmax = 2.6  µg/mL for CI [36] and Cmax = 10.5  µg/mL 
for OR [37]. Mean recovery percentages and RSD values 
were computed for all samples, as presented in Table 8, 
thereby highlighting the exceptional performance of the 
proposed approaches in the estimation process.

Table 6  The validation outcome and parameters of the established tools for CI and OR quantification

a The accuracy of 3 concentrations of CI (4 μg/ml, 6 μg/ml, and 12 μg/ml) and OR (6 μg/ml, 12 μg/ml, and 20 μg/ml)
b Intermediate Precision and Repeatability are computed as the RSD% of 3 concentrations of CI (5 μg/ml, 7 μg/ml, and 13 μg/ml) and OR (5 μg/ml, 7 μg/ml, and 15 μg/
ml)

Tool FSD MC

Drug substance CI OR CI OR

Linearity range μg/ml 2–15 μg/ml 3–25 μg/ml 2–15 μg/ml 3–25 μg/ml

Wavelength nm 280.1 nm 314.2 nm 272.0 nm 306.2 nm

Linear equation Y = 0.2732 X + 0.0031 Y = 0.0778 X + 0.002 Y = 0.2091 X + 0.0026 Y = 0.0571 X + 0.0042

R2 0.9999 0.9998 1 0.9999

Mean% ± SDa 100.63 ± 1.23 100.50 ± 1.02 100.20 ± 1.35 100.11 ± 0.83

Repeatabilityb 0.94 0.91 1.10 1.41

Intermediate Precisionb 1.10 1.75 1.02 1.45

DL μg/ml 0.107 0.163 0.139 0.209

QL μg/ml 0.324 0.495 0.422 0.634

Table 7  Quantification outcome of CI and OR by the suggested 
tools in the produced mixes

a Average of 3 repetitions
b A ratio that mimics the announced ratio in tablet formulation

Tool FSD MC

Drugs 
concentration 
(μg/ml) CI: OR

CI OR CI OR

12:4a 98.92 100.19 98.81 100.93

12:6 100.10 101.39 99.95 100.80

6:12 98.43 101.85 98.01 101.46

8:8b 100.20 100.08 99.17 99.62

Average% ± SD 99.66 ± 1.25 100.88 ± 1.19 98.98 ± 1.08 100.70 ± 1.34
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Table 8  Quantification outcome of CI, and OR via the suggested tools in tablet formulation and enriched serum

a Average μg/ml for the 3 repetitions of CI and OR
b The standard addition is(4,5, 6 μg/ml) for CIPH and ORNI
c The computed value is the average % ± SD for 3 concentrations of the standard added with 3 repetitions
d Recovery% ± SD for the 3 repetitions of CI and OR

Tablet formulation

Tool ANN FSD MC

Drug CI OR CI OR CI OR

Dosage/Tab μg/ml 500 500 500 500 500 500

Assay μg/mla 500.75 500.15 501.25 500.20 496.55 496.95

Recovery% ± SD 100.15 ± 1.67 100.03 ± 1.78 100.25 ± 1.04 100.04 ± 1.15 99.31 ± 1.66 99.39 ± 1.81

Standard addition b.c 99.40 ± 1.88 99.74 ± 1.82 99.98 ± 1.59 99.85 ± 0.24 9.60 ± 0.78 99.65 ± 0.22

Serum sample

Tool ANN FSD MC

Drugs ratio(μg/ml) CI: OR CI OR CI OR CI OR

2.6:10.5d 98.52 ± 0.85 97.9 ± 1.19 95.37 ± 1.10 98.00 ± 0.33 96.41 ± 1.04 97.39 ± 0.39

10:5 96.42 ± 0.69 95.82 ± 1.50 95.50 ± 0.69 97.40 ± 1.52 95.57 ± 0.68 96.73 ± 1.41

5:15 100.30 ± 1.04 100.26 ± 1.12 96.78 ± 1.04 98.13 ± 0.50 96.13 ± 1.50 97.90 ± 0.14

Table 9  Statistical comparison between the elaborated UV tools and the reference HPLC tool for CI and OR estimation in tablet forms

a C-18 column utilizing acetonitrile: water as the mobile phase with (45:55v/v) ratio, pH sets to 3.0 via O-phosphoric acid, flow rate 1 ml/min, estimation at 299 nm
b n = 5
c f(0.05)6.388, t(0.05)2.306

Tablet formulation CI OR HPLCa

ANN FSD MC ANN FSD MC CI OR

Averageb 100.16 100.57 100.07 100.86 100.53 99.82 100.45 100.28

SD 1.82 0.86 1.59 1.70 1.08 1.49 0.94 1.45

Variance 3.3282 0.7378 2.5243 2.8826 1.1607 2.2267 0.8884 2.1019

t-valuec 0.3169 0.2034 0.4604 0.5862 0.3082 0.4935 – –

f-valuec 3.7464 1.2041 2.8415 1.3715 1.8109 1.0594 – –

Table 10  ANOVA (single factor) outcome for comparing the introduced procedures’ results and HPLC procedures’ results for 
estimating CI and OR in tablet formulation

Source of variation Sum of squares DF Mean square F value P-value F crit

CI

 Between gro 0.828673 3 0.276224 0.14774 0.929628 3.238872

 Within gro 29.91456 16 1.86966

 Total 30.74324 19

OR

 Between gro 2.901019 3 0.967006 0.462027 0.712699 3.238872

 Within gro 33.48746 16 2.092966

 Total 36.38848 19



Page 15 of 16Sakur and Al Zakri ﻿BMC Chemistry  (2024) 18:17	

Conclusion
In this study, the Bayesian Regularization Network, Fou-
rier Self-Deconvolution, and Mean-Centering transfor-
mations have demonstrated their remarkable efficacy 
for the concurrent quantification of CI and OR in tablet 
formulations and serum samples. For the multivariate 
technique, the Bayesian regularization model was elected 
over Levenberg due to its superior performance and 
accurate prediction across various drug ratio mixtures. 
A Bayesian network with (1 layer, 2 neurons) configura-
tion was chosen for the concurrent estimation of cipro-
floxacin and ornidazole with excellent scores of MSEP, 
RRMSEP, BCMSEP, and mean recovery. By employing 
univariate techniques, FSD with FMHW:70 and MC in 
the range of (240.0–290.0) nm for CI and (260.0–340.0) 
nm for OR were both successful in resolving CI and OR 
overlapping while maintaining the signal-to-noise ratio 
and exhibiting exceptional sensitivity for the overlapped 
components. The confirmed sustainability of these meth-
odologies through green certificate, AGP, and whiteness 
metrics underscores their suitability for routine analy-
sis. Notably, these approaches eliminate the necessity for 
prior separation processes in drug determination, offer-
ing simplicity, speed, and eco-friendliness.
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