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Abstract 

In this study, Superparamagnetic magnetite nanoparticles (SPMNPs) are used in a new way as direct nanocarrier for 
Doxorubicin hydrochloride (DOX) via the functionalization of their surface with tri‑sodium citrate through ligand 
exchange to conjugate DOX with imine bond to form tri‑sodium citrate functionalized magnetite loaded DOX 
nanoparticles (DOX/Cit‑MNPs). The DOX/Cit‑MNPs were coated with chitosan to form chitosan coated citrate func‑
tionalized magnetite loaded DOX nanoparticles (Cs/DOX/Cit‑MNPs) to offer biodegradability and pH‑sensitive drug 
release features. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed functionalization of SPMNPs, 
DOX‑conjugation, and chitosan coating. The trans electron microscopy (TEM) show spherical nanostructures with 
average size 40 nm for coated nanocarriers. The saturation magnetization value of carrier was 59 emu/g.The in‑vitro 
release of DOX from the chitosan coated tri‑sodium citrate functionalized magnetite loaded DOX nanoparticles (Cs/
DOX/Cit‑MNPs) was studied to be 75% at pH 5.5 and 28.6% at pH 7.4 which proves the pH sensitivity of encapsulated 
Cs/DOX/Cit‑MNPs. The effect of Cs/DOX/Cit‑MNPs toward Human Breast Cancer Cell lines (MCF7) was studied and 
found to be 76% without magnet and 98% with external magnet after 72 h. With increasing DOX concentration and 
treatment time, the cell inhibition (IR%) of DOX solution and Cs/DOX‑Cit‑MNPs suspension to all cells is increased. Cs/
DOX/Cit‑MNPs showed sustained release and good inhibition to cancer cells and offer a protective mode for normal 
cells (WISH) compared to the free DOX.
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Graphical Abstract

Introduction
Recently, the expansion of nano-medical technology has 
been observed mainly in the fields of nano pharmaceu-
tics, drug delivery and targeted therapy which represent 
one of the most promising options for many diseases 
especially for cancer.

Cancer is the second deadly disease in the world that 
expects to surpass heart disease as the top cause of death 
in the coming few years [1]. In 2015, number of cases 
diagnosed with cancer was 1658.37 in the United States 
[1] and 196,900 in Canada and a quarter of these cases 
are expected to die [2]. Besides the unknown causes of 
cancer, its treatment is exceptionally challenging. The 
available treatments are single or combination of chem-
otherapies, radiation, and surgery; all of which are not 
ensured to be actually effective. Chemotherapy and radi-
ation intend to destroy cancer cells; yet they have signifi-
cant side effects on healthy cells and if the infected cells 
are targeted, the anticancer drug release rate is usually 
uncontrolled [3].

Doxorubicin (DOX), as an anti-cancer drug model, is 
one of the anthracycline family and antineoplastic agent 
which is considered effective for many carcinoma like 
leukemia, liver cancer and is very effective in advanced 

stages of breast cancer [4]. DOX has many side effects, 
especially heart damaging and also low stability in the 
circulatory system [5].

A lot of the unfavorable side effects of anti-cancer 
drugs specially DOX can be overcome by targeting the 
drugs and directing them to tumor sites which increase 
their cytotoxic effect against cancer cells [6].

Many targeting techniques have been evaluated; one 
of these techniques is Nano-enabled drug delivery tech-
nique (NEDD) which is concerned with specific cell tar-
geting to promote drug release in the infected site [7]. 
The NEDD systems include but not limited to nanopar-
ticles, nanofibers, polymers, nanocapsules, quantum dots 
and carbon nanotubes [8].

One of the NEDD systems that are offering a promis-
ing concept for treating tumors is Magnetic drug tar-
geting (MDT). Magnetic nanoparticles are not only a 
well-known category of NEDD systems, but also they 
are FDA approved and have been applied in many medi-
cal fields as drug delivery, gene therapy, magnetic reso-
nance imaging (MRI), tissue repair, and biosensors [9]. 
A distinct type of magnetite is the superparamagnetic 
iron oxide nanoparticles (SPMNPs) which are most 
commonly used for biomedical applications due to their 
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specific features like: biocompatibility and ease of synthe-
sis [10]. The properties of SPMNPs depend on the surface 
nature. So, surface chemistry plays important role in its 
biological and chemical properties when using in bio-
medical applications.

As every therapeutic regimen has its advantages and 
disadvantages, the magnetic drug targeting (MDT) sys-
tem has some disadvantages. Hence, depending on the 
physical and chemical properties of SPMNPs, surface 
functionalization and modification are considered one 
of the best solutions not only to overcome the disadvan-
tages of SPMNPs but also, to improve their features and 
make them suitable for a wide range of applications.

Iron oxide NPs (IONPs) especially magnetite  (Fe3O4) 
have been widely scrutinized in the medical fields. IONPs 
can reach the malignant tissue/cells in a (i) passive man-
ner, e.g., by the enhanced permeability retention effect 
(EPR), (ii) an active manner by applying ligands, specific-
cell-targeting, and (iii) an extraneous manner where an 
external stimulus, e.g., US controls the cellular uptake 
and the release of neoplastic cargo. One of the chal-
lenges of using IONPs is that they tend to agglomerate 
because of their larger surface area-to-volume ratio and 
dipolar coupling. The alterations with biologically com-
patible materials can prevent agglomeration and improve 
their stability, biocompatibility, dispersibility, biodistri-
bution, and blood circulation time (BCT) [11]. Recently, 
numerous stimuli responsive smart MNPs have been 
engineered to deliver therapeutic cargo in response to 
any stimulant including pH, temperature, redox, MF, 
etc. [12–16]. Their advantages include potential higher 
drug accumulation in targeted organs, prolonged BCT, 
enhanced systemic stability, decreased toxic side effects 
towards normal cells, and improved therapeutic efficacy 
[17, 18]. However, their safety, large-scale manufactur-
ing challenges, cost-effectiveness, and poor perception of 
disease heterogeneity in the patient population constrain 
their clinical translation.

Despite a vast number of polymeric materials, chitosan 
NPs have broadly been studied due to their exclusive 
chemical properties and applications [19]. Chitosan is a 
linear carbohydrate-backboned biopolymer that contains 
N-acetyl-d-glucosamine and d-glucosamine repeating 
units. Owing to its active amino groups, chitosan could 
be named as a versatile biopolymer. In addition to chi-
tosan’s antimicrobial activity, mucoadhesivity, and antitu-
mor activity, it could be used as a great drug carrier [16]

There are two methods for surface functionaliza-
tion: ligand addition and ligand exchange [20, 21]. In 
ligand exchange, original surface replaced with certain 

functional groups as thiol, carboxylic acid, amine, which 
improves the surface properties [22]. For ligand addi-
tion, polymers adsorb on surface of the SPION particles 
physically by hydrophobic interactions, electrostatic and/
or by hydrogen bonding. The nature of the polymer may 
be synthetic e.g. polyethylene glycol, polyacrylic acid, 
poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (meth-
acrylic acid) or natural, as in the case of chitosan, starch, 
cellulose, agarose, and dextran. Natural polymers, espe-
cially polysaccharide, are widely used in the field of drug 
delivery and biomedical applications [23]. Chitosan, the 
second most abundant biopolymer after cellulose, is an 
inexpensive, inert, hydrophilic, biocompatible support, 
and is thus attractive for drug delivery systems [24, 25].

The objectives of the present study can summarized as 
follows:

 i. Design of SPMNPs as a drug carrier for binary tar-
geting of DOX by functionalizing the surface of 
SPMNPs with COOH groups from tri-sodium cit-
rate.

 ii. Characterization of the SPMNPs using different 
characterization techniques viz. FTIR, Zeta poten-
tial, SEM/TEM, EDX, XDR Saturation magnetiza-
tion (MS) values of MNPs

 iii. Elucidation of the reaction mechanism of  Fe3O4 
nanoparticles with tri-sodium citrate, the reaction 
mechanism of DOX with Cit-MNPs and the reac-
tion mechanism of chitosan with DOX-Cit-MNPs

 iv. Assessment of DOX loading efficiency and the in-
vitro release studies of DOX from Cs/DOX/Cit-
MNPs

 v. Evaluation of the Cellular Internalization of Cs/
DOX-Cit-MNPs

 vi. Studying the cytotoxicity potentials of Cs/DOX/
Cit-MNPs against cancerous and normal cells.

Material and methods
Materials
Iron (III) chloride hexahydrate  (FeCl3.6H2O), Iron (II) 
chloride tetra hydrate  (FeCl2.4H2O) were purchased from 
Sigma. Tri-sodium citrate from (Fluka). Chitosan (Cs) 
powder was a product of Sigma-Aldrich and the degree 
of deacetylation (DD) was 87%. Sodium tripolyphos-
phate (STPP) with a purity of 85%. Glacial acetic acid 
(≥ 99.85%), sodium hydroxide ≥ 98% beads and doxoru-
bicin hydrochloride (DOX. HCl) were purchased from 
Sigma Aldrich.
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Preparations
Synthesis of MNPs
In three-neck flask, MNPs were synthesized by co-pre-
cipitation of  Fe2+ and  Fe3+ solution with ratio (2:1) at 
70 °C under  N2 [26].

At pH 10,  Fe3O4 nanoparticles are precipitated by add-
ing NaOH solution (30%) under vigorous stirring at 80 °C. 
With external magnet, the black precipitate was separated, 
washed several times with distilled water and ethanol. 
Finally,  Fe3O4 is dried overnight under vacuum at 50 °C.

Preparation of Cit‑MNPs
In three necked flask, inert atmosphere under continu-
ous  N2 flow, mixture of  FeCl2 0.7H2O, dehydrated  Fe2Cl3 
and tri- sodium citrate  (Na3C6H5O7) solutions [27] with 
molar ratio  Fe3

+:Fe2
+:Na3C6H5O7 (2:1:0.5) are mixed 

drop wising in NaOH solution with 30% concentration 
at 80 °C under vigorous stirring and pH10 for 3 h. With 
external magnet, the black precipitate of MNPs modi-
fied with  Na3C6H5O7 tri-sodium citrate (Cit-MNPs) was 
separated and washed several times with distilled water 
followed by ethanol. Finally, the Cit-MNPs are dried 
overnight under vacuum at 50 °C.

Preparation of DOX/Cit‑MNPs
30% (W:W) of DOX was added to 0.5 g of Cit-MNPs sus-
pended in distilled water with concentration (10 mg/ml) 
under nitrogen and vigorous stirring at 80 °C for 3 

With external magnet the black precipitate was sepa-
rated, the particles were washed several time with dou-
ble-distilled water and then dried under vacuum at 50 °C 
for 24 h to get the black powder.

Preparation of Cs/DOX/Cit‑MNPs
Under  N2, a suspension from DOX loaded Cit-MNPs 
(50  mg) is stirred at room temperature in three necked 
flask with Cs solution (3  mg/ml). Then, STPP solution 
(1 mg/ml) is added drop wise to this mixture and left to 
stand for 3 h.

The dark suspension is separated by magnet, washed 
several times by double-distilled water and dried in vac-
uum oven at  50◦C overnight.

Determination of loading efficiency
The loading efficiency (LE%) was calculated indirectly 
by detecting the absorbance of unloaded drug in the 
supernatant with a UV-spectrophotometer for DOX, 
at 481 nm (Eq. 1) before and after coating MNPs & Cit-
MNPs with chitosan layer.

Fe+2 + 2Fe+3 + 8Cl− + 8NaOH
pH 10
−→ Fe3O4

+ 8NaCl + 4H2O.

In vitro drug release studies
In vitro release profiles of DOX from Cs/DOX-Cit-MNPs 
were determined as follows: 3 ml of Cs/DOX-Cit-MNPs 
suspension was withdrawn and dialyzed in a dialysis 
membrane tube (MW 12,000 to 14,000 Da) against 50 ml 
of 0.1 M buffer in two different pHs (pH 5.0: acetate and 
7.4: phosphate) under shaking at 100 rpm at 37 °C. Repeat 
this process after 6, 12, 24, 48, 72,…168 h and replace the 
withdrawn sample by 3 mL fresh medium. The amount of 
released drug was determined by UV–vis spectrometry 
at 481 nm in comparison to the standard curve.

Characterization
Fourier transform infrared (FTIR) spectra studies
FTIR spectra of the MNPs, Cit-MNPs, DOX/Cit-MNPs 
and Cs/DOX/Cit-MNPs were recorded by FT-IR spectro-
photometer Bruker Vector 22 Germany in the range 400 
to 4000  cm−1 at resolution of 4  cm−1.

Zeta potential
The Zeta potential was determined by the Malvern Zeta-
sizer nano s in deionized water at (pH 6.3, ionic strength 
0) and  10−3  M NaCl aqueous solutions at pH 4–9 
(adjusted by NaOH or HCl) with concentration (1  mg/
ml).

Transmission electron microscopy (TEM)
To determinate particle size and shape of Cit-MNPs, 
DOX/Cit-MNPs and Cs/DOx-Cit-MNPs, TEM was used 
and they were negatively stained with 1.0% (w/v) phos-
photungstic acid.

Scanning electron microscopy (SEM)
The morphological characteristics of synthesized nano-
particles were examined by SEM. The samples were 
coated with gold and imaging is performed at accelerat-
ing voltage 30 kV.

Energy dispersive X‑ray spectroscopy (EDX)
EDX analysis was carried out to confirm the functionali-
zation of MNPs surface by determination the percentage 
of COOH and  NH2 groups on the functionalized mag-
netite nanoparticles.

(1)Drug L.E% =
Total drug − Free drug

Total drug
× 100.
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Thermal gravimetric analysis (TGA)
To study the thermal stability of Cs-MINPs under tem-
perature range (0–600  °C), thermogravimetric analysis 
for Cs/DOX-Cit-MNPs was carried out with Shimadzu 
TGA-50H. Analyses were carried out with 20 mg of sam-
ple under nitrogen atmosphere with heating at 5 °C/min.

X‑ray diffraction (XRD)
The crystal structures of the nanoparticles were 
detected by XRD.

Saturation magnetization (MS) values of MNPs
The magnetization force of MNPs was determined by 
(VSM) device magnetometer at 25  °C and ± 10,000G 
applied magnetic field.

Cellular internalization of Cs/DOX‑Cit‑MNPs
MCF-7 cell line was used to study the cellular inter-
nalization pathway. Cells with concentration 1 ×  104 
cells per ml in a 96 well plate (tissue culture grade). In 
100  ml of culture medium consist of DMEM medium 
containing 10% FBS and 1% antibiotic mixture, The 
MCF-7 cells were seeded at a density of 1 ×  104 per 
100  ml DMEM into 96-well plates. MCF-7 cell line is 
used to follow DOX path in the tumor cell. Cs/DOX-
MNPs (500  μg/ml) is incubated for 24  h in two Petri 
dishes. The cells treated with Cs/DOX-MNPs were 
washed three times with PBS. An external magnet is 
put under one dish and the other dish without mag-
net. The cellular internalization of nanoparticles was 
observed by fluorescence microscopy after adding 
4′,6-diamidino-2-phenylindole (DAPI) stain for cell 
nuclei staining [28, 29].

Magnetically guided drug delivery involves an exter-
nal magnetic field to deliver nanoparticles to a desired 
target area where the medication is needed [30, 31].

Cytotoxicity assay‑MTT
The cytotoxicity studies through MTT test with and 
without external magnetic field for the free DOX and 
the Cs/DOX-Cit-MNPs towards human tumor breast 
cell (MCF-7) and the normal human cell (WiSH) lines 
were carried out according to method previously 
described [32–35].

Culture media
Dulbecco Modified Eagles Medium (DMEM) con-
taining 2  m Ml-glutamine, 100  Units/ml penicillin 
and100  g/ml streptomycin supplemented with 5% foe-
tal bovine serum (complete media).

Preparation of cell suspension for the assay
The desired human cancer cell lines, MCF-7 (breast can-
cer cell line) and the normal human cell (WiSH) lines 
were grown at 37 °C, 5%  CO2 and 90% relative humidity 
till sub-confluent stage. The cells were then harvested by 
treatment with trypsin EDTA solution. The number of 
cells was counted in a haemocytometer and the cell den-
sity was adjusted to75,000 cells/ml in complete media.

MTT assay was carried out in triplicates in 96 well micro-
titer culture plates. 100 µl of the cell suspension (7500 cells) 
was added into each well of the 96 well plates and incubated 
at 37 °C, 5%  CO2 and 90% relative humidity for 24 h.

After 24 h, cells were treated with different concentra-
tions (6.5, 12.5, 25 and 50 µg) of DOX alone, (6.5, 12.5, 
25, and 50  µg) DOX loaded nanoparticles and the con-
trol group is formed of free cells. The plates were incu-
bated for a further period of 24 h in the  CO2 incubator. 
20 µl of 5 mg/ml MTT was added into each well and the 
plates were incubated for 3.5 h. At the end of incubation 
period, culture media was carefully removed and 150 μl 
MTT solvent was added into each well. After covering 
the plates within foil, the plates were agitated on orbital 
shaker for 15 min. Absorbance was read at 590 nm.

The average values from triplicate readings were deter-
mined [35] and the average value for the blank was sub-
tracted and the inhibition rate %, was calculated from the 
following equation:

where, As = Absorbance value of sample. Ab = Absorb-
ance value of blank. Ac = Absorbance value of control.

Results and discussions
Preparation and reaction mechanism of nanoparticles
Preparation and reaction mechanism of naked  Fe3O4 
nanoparticles (MNPs)
The MNPs were prepared by co-precipitation of  Fe2+ and 
 Fe3+ ions in an alkaline media. Ferrous to ferric chloride 
was poured drop-wisely to sodium hydroxide, under 
vigorous stirring and  N2 flow. The Magnetite is formed 
immediately and removed from solution through an 
external magnetic field.

During the precipitation of MNPs from  Fe2+ and 
 Fe3+ salts mixture, two separate reactions may be occur 
after adding sodium hydroxide till the black MNPs are 
observed [36].

The possible reaction for the formation of MNPs is as 
follows:

(2)

Cell inhibition rate (IR %)

= 100 −
{

(As− Ab)/ (Ac− Ab)
}

× 100,
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Fig. 1 Reaction mechanism of  Fe3O4 nanoparticles with tri‑sodium citrate

Fig. 2 Reaction mechanism of DOX with Cit‑MNPs
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Reaction mechanism of Cit‑MNPs
Two reactions were involved in this process. First, the 
tri-sodium citrate was hydrolyzed to highly reactive car-
boxylic groups in alkaline medium. Then, they conden-
sate with free –OH groups on the surface of magnetite to 
form Fe–COOH as shown in Fig. 1 [4].

Reaction mechanism of DOX/Cit‑MNPs
DOX was conjugated directly with Cit-MNPs through 
the reaction between carboxylic group of Cit-MNPs 
and amine group of the DOX via Schiff base chemistry. 
The reaction mechanism is schematically represented in 
Fig. 2.

Reaction mechanism of Cs/DOX/Cit‑MNPs
To overcome the side effects of DOX, it was coated with 
chitosan as a natural biocompatible and smart biodegrad-
able polycation [37]. The coating process occur through 
cross linking method by using STPP solution as an ionic 

Fe3+ + 3OH− → Fe(OH)3
Fe(OH)3 → FeO(OH) + H2O

Fe3+ + 2OH− → Fe(OH)2
2 FeO(OH ) + Fe(OH)2 → Fe3O4 ↓ + 2H2O.

cross linker between chitosan layers. The reaction mech-
anism is schematically represented in Fig. 3.

Characterization
FTIR spectra
The FTIR spectra of MNPs, (Additional file 1: Fig. S1a), 
confirmed the formation of MNPs as the Fe–O charac-
teristic peaks appear at 573   cm−1. In aqueous medium, 
the surface of the MNPs has been surrounded by OH 
groups that absorb at about 1623   cm−1 (deforming) and 
3409  cm−1 (stretching).

The FTIR spectra of Cit/MNPs, (Additional file  1: 
Fig. S1b) indicated the reaction between MNPs and tri-
sodium citrate as a strong band appears at 586   cm−1 
which is the Fe–O characteristic peaks of MNPs. The 
vibrations of asymmetry and symmetry stretching from 
the coordinated carboxyl anion of tri-sodium citrate 
were located at 1625 and 1446   cm−1, respectively. The 
absorbance peak at 3434   cm−1 represents stretching 
band of O–H groups surrounding the surface of MNPs 
and band at 1625  cm−1 because of complexing  H2O with 
Cit-MNPs.

The FTIR spectrum, (Additional file  1: Fig.  S1c) dem-
onstrated that DOX is conjugated with Cit-MNPs 
through imine bond between carboxylic groups on the 
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surface of Cit-MNPs and amine group of DOX. This 
imine bond appears at 1033  cm−1; the band that appears 
at 1790  cm−1 refers to the carboxylic group on DOX. The 
Vibrational bands appearing at 1627 and 1424   cm−1 of 
C=O and C–O stretching vibrations refer to some car-
boxylic groups that are not conjugated with DOX. The 
Fe–O characteristic peak of MNPs appears at about 
576  cm−1.

The FTIR spectra for Cs/DOX/Cit-MNPs, (Additional 
file 1: Fig. S1d), prove that DOX/Cit-MNPs are success-
fully coated with chitosan layer as N–H stretching vibra-
tion overlaps with OH stretching at 3417   cm−1 and the 
1620   cm−1 peak of N–H bending vibration; the vibra-
tional band at 1161  cm−1 refers to (P–O) of STPP which 
proves the crosslinking between chitosan and MNPs–
COOH loaded with DOX. A new sharp peak at 576  cm−1 
related to Fe–O group, specific for the stretching vibra-
tion of Fe–O groups from the magnetite nanoparticles, 
confirmed the loading of the  Fe3O4 on chitosan [38–40].

The FT-IR spectra show typical vibration bands of the 
MNPs, Cit-MNPs, DOX/Cit-MNPs and Cs/DOX/Cit-
MNPs according to other studies [14, 41, 42]. Due to 
the fact that DOX is rich in amine groups, the loading 
step was confirmed by the peaks attributed to the imine 
bonds. This implies that the synthesized Cs/DOX/Cit-
MNPs have properly been loaded with DOX [14, 43].

Zeta potential
The surface charges of naked MNPs, Cit-MNPs, DOX/
Cit- MNPs and the Cs/DOX l/Cit-MNPs are reported 
using zeta potential. All samples were suspended in water 
and  10−3 M NaCl aqueous solutions at pH 4–9 (adjusted 
by NaOH or HCl) with concentration (1 mg/ml).

The zeta potential of the naked MNPs, Cit-MNPs, and 
the Cs/DOX/Cit- MNPs in deionized water were 32.2 ± 4, 
− 30.3 ± 5 and 40.6 ± 3 mV, respectively.

For Cit-MNPs converting the net charge of MNPs to 
negative charge (− 30.3 ± 5 mV) in water with good col-
loidal stability because of the effect of citrate ions.

The Cs/DOX/Cit-MNPs are positively charged with 
40.6 ± 3 m.v which means that chitosan forms a positively 
shell around the DOX/Cit- MNPs that will increase the 
cellular internalization by the cancer cells than negatively 
charged particles. The effect of different pHs on the zeta 
potential of nanoparticles shown in Fig.  4 and it proves 
that the surface charge of both nanoparticles are very 
sensitive to pH of surrounding media.

TEM and SEM analysis
The TEM results reported in Fig.  5a, b indicated that 
naked MNPs and Cit-MNPs are successfully synthesized 
in nanoscale with diameter ranged from 3.5–7.8  nm 
and 5–8  nm, respectively with uniform spherical shape 
and good disparity. The Cs/DOX Cit-MNPs were also 
formed with spherical shape with diameter ranged from 
40–55 nm and with good disparity (Fig. 5c).

The surface morphology of naked MNPs, Cit- MNPs 
and Cs/DOX Cit-MNPs was observed from SEM images 
in (Additional file 1: Fig. S2a–c). The spherical shape and 
the homogeneity structure of nanoparticles for naked 
MNPs, Cit- MNPs and Cs/DOX Cit-MNPs, can be 
noticed.

The morphological studies of the present work by 
SEMand TEMhave been spherically. Morphological stud-
ies by SEMof BPPE-CCMNPs revealed that the MNPs 
have been spherically formed. However, TEMimages 
taken from BPPE-CCMNPs display mostly the core of 

Fig. 4 Relation between zeta potential and different pHs of (a)  Fe3O4 magnetite, (b) Cit‑MNPs and (c) chitosan coated DOX‑Cit‑MNPs
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the nanocomposite [14]. This could be due to the col-
lapse of the chitosan layer on the surface of the magnetic 
core on sample dispersion prior to the imaging step [14, 
44]. Nevertheless, images taken from the synthesized 
BPPE-CCMNPs show that they are roughly spherical in 
shape [14]. Images achieved from AFM were on par with 
SEMand TEMresults, but showed a bit of aggregation 
[14].

EDX analysis
To determine the elemental composition of the samples, 
SEM/EDS was used. From the results obtained in Fig. 6a 
for naked  Fe3O4, the spectrum contained two peaks, 
which were assigned to Fe and O.

The Cit-Fe3O4 in Fig.  6b contains 3 main peaks that 
refer to Fe, O and C with traces of Na. The presence of 
carbon peak with 19.55 weight % indicate the function-
alization with citrate ions with traces of Na may be due to 

slight amount of sodium citrate that are not washed well. 
The Cs/DOX Cit-MNPs in Fig. 6c have 5 main peaks that 
refer to Fe, O, C, N and P. The presence of C and N prove 
the functionalization of iron oxide surface with sodium 
citrate. The presence of N peak proves the coating with 
chitosan to reach 2.1%. The presence of P peak with 3.3% 
may be from the STPP used to crosslink the chitosan 
layer with each other and with iron oxide nanoparticles.

XRD analysis
XRD analysis confirms the crystalline properties of the 
Cit-MNPs, Cs/DOX Cit-MNPs and confirmed the pres-
ence of pure phase of magnetite. Representative powder 
XRD patterns of two samples are presented in Fig. 7a, 
b. The presence of sharp and intense peaks proves the 
formation of highly crystalline nanoparticles. Accord-
ing to the literature, iron oxide nanoparticles show 

Fig. 5 TEM images of (a) naked MNPs (b) Cit‑MNPs and (c) Cs/DOX/Cit‑MNPs
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sharp prominent peaks at 30.5 (220), 35.84 (311), 43.46 
(400), 53.90 (422), 57.38 (511) and 62.90 (440) with 311 
peak having the highest intensity [45–48] in agreement 
with ICCD magnetite card number 00-019-0629. These 
peaks with similar intensities and with the correspond-
ing angles were present in all of the tested samples 

(Fig.  7a). This indicates that the used synthesis tech-
nique for  Fe3O4 was feasible [46, 47, 49, 50].

It was also noted from Fig. 7b that the addition of chi-
tosan did not affect the crystalline structure of Cit-MNPs. 
The average particle size of MNPs can be calculated using 
Scherer’s equation (Eq. 3).

Fig. 6 EDX analysis for a) naked MNPs, b) citrate magnetite nanoparticles (Cit‑MNPs) & c) chitosan/DOX‑citrate magnetite nanoparticles (Cs/DOX/
Cit‑MNPs)

Fig. 7 XRD spectra for (a) Cit‑MNPs and (b) Cs/DOX‑Cit‑MNPs
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where, K is a constant, λ is X-ray wavelength, β is the 
peak width of half-maximum and θ is the Bragg diffrac-
tion angle [51]. The diameter of MNPs was calculated by 
Scherer’s equation to be 6 nm for Cit- MNPs and 35 nm 
for Cs/DOX/Cit-MNPs.

The synthesis of Cit-MNPs, Cs/DOX Cit-MNPs was 
confirmed by XRD. It could be determined from the 
diffraction peaks of the Cit-MNPs, Cs/DOX/Cit-MNPs 
that the synthesized MNPs have sustained their purity 
after surface modification and drug loading step [14, 
42].

Thermogravimetric analysis
The TGA curves of Cs/DOX/Cit-MNPs are shown 
in (Additional file  1: Fig. S3). Three weight losses are 
observed in the TGA diagram. The initial weight loss 
about 9% may be due to the evaporation of absorbed  H2O 
between 50 and 156  °C. The weight loss of about 4% in 
the temperature range 150–600 °C is due to the decom-
position of Cs layer.

Magnetic properties of naked and Cs/DOX/Cit‑ MNPs
The hysteresis loop in the magnetization curve presented 
in (Additional file  1: Fig. S4) illustrates that, the rema-
nence (residue magnetization) and coercive force (the 
applied field that reduces magnetization to zero) were 
zero and there was no magnetic hysteresis loop observed, 
proving the characteristic superparamagnetic behavior of 
all prepared MNPs. The saturation magnetization (Ms) 
values were found to be 60 emu/g for naked (Additional 
file 1: Fig. S4a) and 55 emu/g for Cit-MNPs (Additional 
file  1: Fig. S4). This difference in magnetization values 
(Ms) between naked MNPs and Cit-MNPs may be due 
to the presence of sodium citrate on the surface of mag-
netite nanoparticles as a denser coating [52]. This effect 
of sodium citrate on the saturation magnetization (Ms) 
value is negligible in comparison with the other coating 
materials as silica (34.3 emu/g) [53]. On the other hand, 
the saturation magnetization (Ms) values for Cs/DOX/
Cit-MNPs were found to be 48 emu/g (Additional file 1: 
Fig. S4c).

Assessments of the magnetic properties of the nano-
particles show that the MNPs have satisfactory magnetic 
potential. However, at the coating and drug loading step, 
the magnetic potential has gradually been decreased. The 
magnetic property reduction of the nanoparticles at these 
steps could potentially be due to the addition of the new 
layers which hinders the magnetic strength of the MNPs 
[42]. Owing to the magnetic potential of the synthesized 
Cs/DOX/Cit-MNPs, it could be used as targeted therapy 

(3)Scherer equation D = K�/(βcosθ), by external magnetic field in breast cancer drug delivery 
for further studies [14, 54].

DOX loading efficiency %
The loading efficiency % increases with increasing 
DOX concentration to reach 99.6% for 30% DOX (w %), 
Table 1. The high loading % may be due the large surface 
area and large number of active carboxylic groups that 
interact with these different concentrations from DOX to 
reach 99.6% for 30% (w %) from Cit-MNPs.

Studies on drug loading of the Cit-MNPs show dem-
onstrated that the loading efficiency % increases with 
increasing DOX concentration. The high loading % may 
be due the large surface area and large number of active 
carboxylic groups that interact with these different con-
centrations from DOX to reach 99.6%. Taherian et  al. 
[14] studied drug loading of the Chitosan-coated mag-
netic nanoparticles (CCMNPs) show rapid loading of 
Black pomegranate peel extract (BPEE) at the first stages 
[14]. However, when time passed, the absorption rate 
was moderately decreased. Since there was not much 
change in loading efficiency of the CCMNPs from 120 
to 180  min, it could accordingly be concluded that the 
CCMNPs have reached their maximum loading capacity. 
This could be due to the incorporation of the polyphenols 
into the chitosan layer [42].

In‑vitro release studies of DOX from Cs/DOX/Cit‑MNPs
The drug release behavior of DOX from Cs/DOX/Cit-
MNPs was studied in the physiological pH (7.4) and in 
acidic media at pH 5.5. From the results shown in Fig. 8, 
the Cs/DOX/Cit-MNPs offer a sustained DOX release 
from core shell nanoparticles in acidic media at pH 5.5, 
Fig. 8a. A burst release occurred in the first 6 h to reach 
6%, then a sustained release began to be 12% after 24 h to 
reach 75% after 168 h.

At pH 7.4, Fig. 8b, an initial burst release occurred in 
first 6  h to reach 4.3%, then sustained release began to 
reach 7% after 24 h and followed by controlled sustained 
release to reach 28.6% after 168 h.

The obtained results indicated the pH-dependency 
in drug release rate from the nanocarriers as it depends 

Table 1 Loading efficiency % of DOX‑Cit‑MNPs with different 
DOX concentrations

Sample Drug concentrations (%) Loading 
efficiency 
(%)

DOX‑Cit‑MNPs 10 98.2

20 99

30 99.6
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on the cleavage of acid-labile linker used for drug con-
jugation to the MNPs nanoparticles. Our results are 
consistent with the other researcher’s report [55] which 
demonstrates that the weak acidic condition could accel-
erate cleavage of the imine bonds linker.

Cellular internalization of Cs/DOX‑Cit‑MNPs
The internalization of Cs/DOX-Cit-MNPs on MCF-7 
cells was examined by fluorescence microscopy with 
Fig. 9 and without external magnet, Fig. 10. DOX itself is 

a fluorescent compound detected with red filter of fluo-
rescence microscope that appears with red color. The 
control images of DAPI staining and free DOX are pre-
sented in Fig. 9a, b. In Fig. 9c–f, the red color proves that 
Cs/DOX-Cit-MNPs were internalized to the cells, and 
the deepness of red color refer to the concentrations of 
nanoparticles in the cells compared to the control images 
of DAPI staining and free DOX.

The internalization mechanisms of free DOX and Cs/
DOX-Cit-MNPs are different. As free DOX internalized 

Fig. 8 Release profile of DOX from chitosan‑Cit‑MNPs nanoparticles at (a) pH 5.5 and (b) pH 7.4

Fig. 9 Fluorescent microscopy images without external magnet. a Control of DAPI stain labelled nuclei of the cells. b Control of free Doxorubicin, 
(c–f) fluorescence of internalized Cs/DOX‑Cit‑MNPs inside the MCF‑7 cells after 3, 24, 48, 72 h, respectively
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the tumor cell by diffusing through its cell membrane 
but Cs/DOX-Cit-MNPs are internalized by endocyto-
sis mechanism [56, 57]. This endocytic path involved 
three stages with three different pHs. Firstly, the early-
endosomes with pH near 7.4, followed by endo-lys-
osomes with pH 5.5–6.0 and be around 4.5 in lysosomes.

By using an external magnet for targeting the nanopar-
ticles to the MCF-7 cells, we observed increasing in red 
color on the cells which refer to nanoparticles accumula-
tion inside the tumor cell due to the magnetic targeting 
as shown in Fig. 10.

So, Cs/DOX/Cit-MNPs will offer a responsivity to pH 
and selectively drug release in the malignant cells of the 
targeted organ with magnetically targeting responsivity.

Cytotoxicity studies of Cs/DOX/Cit‑MNPs
The cytotoxic effects of Cs/DOX-Cit-MNPs to breast 
cancer cells using the in vitro MTT assay without exter-
nal magnet are illustrated in Table  2. With increasing 
DOX concentration and treatment time, the IR % of DOX 
solution and Cs/DOX-Cit-MNPs suspension to all cells is 
increased. Cs/DOX-Cit-MNPs showed sustained release 
and good inhibition to cancer cells.

As shown in Table  2, after 24  h, the inhibitory activ-
ity of Cs/DOX-Cit-MNPs suspension toward MCF-7 & 
WiSH cell lines was lower than that of free DOX solution 
for all concentrations to be 75 ± 0.06%, 59 ± 0.002 for free 
DOX and 40 ± 0.03%, 12 ± 0.01% for Cs/DOX-Cit-MNPs 
at the highest conc. (50 μg/ml) (P > 0.001).

Fig. 10 Fluorescent microscopy images with external magnet. a, b Fluorescence of internalized Cs/DOX‑Cit‑MNPs inside the MCF‑7 cells after 3, 
24 h, respectively

Table 2 show the comparison between inhibition rate (IR %) of Cs/DOX‑Cit‑MNPs with different concentrations (6.5, 12.5, 25, 50 μg/
ml) after 24, 48 and 72 h toward MCF‑7 & WISH

All results are expressed as the mean ± standard deviation with (n) = 6 and p < 0.001

Sample Cells IR, %

After 24 h After 48 h After 72 h

Drug concentration (mg)

6.5 12.5 25 50 6.5 12.5 25 50 6.5 12.5 25 50

Cs/DOX‑Cit‑MNPs Tumor cells (MCF‑7) 15 24 33 40 25 38 45 60 31 45 60 76

Normal cell (WISH) 3 6 10 12 5 5 12 17 5 8 13 22

Free DOX Tumor cells (MCF‑7) 20 31 50 75 24 46 72 88 25 46 75 91

Normal cell (WISH) 12 25 36 59 18 36 55 72 18 38 60 76
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After 48 h Table 2, the IR % of Cs/DOx-Cit-MNPs and 
DOX solution toward MCF-7 cell line were 60 ± 0.09% 
for Cs/DOX-Cit-MNPs and 88 ± 0.09% for free DOX at 
the highest conc. (50 μg/ml) (P < 0.001). A very signifi-
cant difference was observed in IR% after 48 h between 
the free DOX & Cs/DOX-Cit-MNPs toward nor-
mal cell line (WiSH) to be 72 ± 0.05% and 17 ± 0.003, 
respectively.

After 72  h Table  2, IR% was 93 ± 0.07% for free 
DOX and 76 ± 0.10% for Cs/DOX-Cit-MNPs toward 
MCF-7 cell line. The same significant difference in IR% 
between free DOX & Cs/DOX-Cit-MNPs toward nor-
mal cell line (WiSH) was observed to be 76 ± 0.04% and 
22 ± 0.07%, respectively.

From these results, Cs/DOX-Cit-MNPs offer a pH-
sensitive sustained release for DOX from the MNPs 
through the chitosan shell to the outer media which 
explain the low IR % in the first 24  h then the IR %, 
increased by time to reach the maximum after 72  h 
with IR% = 76 ± 0.10.

The other important feature gained from Cs/DOX/Cit-
MNPs nano carrier is their non-toxicity toward normal 
cells (WISH).

The Cs/DOX-Cit-MNPs offer a protective mode for 
normal cells compared with free DOX with IR% 22 ± 0.07 
after 72 h. This is may be due to the biocompatibility fea-
ture of chitosan and magnetite nanoparticles in addition 
to pH-sensitivity of chitosan which is another important 
factor in the low IR% toward normal cell as the pH of 
normal cell is approximately 7.4. At this pH chitosan shell 
shrinks and doesn’t promote the DOX release from it.

When MTT assay was carried out by using an external 
magnet for Cs/DOX-Cit-MNPs toward MCF-7 cell line 
(pH = 5.5), it was found that the IR% highly increased in 
presence of external magnetic field to reach 71 ± 0.07% 
in the first 24 h and 98 ± 0.04% after 72 h in (Additional 
file  1: Fig. S5). This increase in IR% in the presence of 
external magnetic field is due to the super paramag-
netic properties of magnetite nanoparticles which act as 
a remote control for the nanoparticles toward the tumor 
cells and targeted drug release in the desired place. Also 
chitosan shell plays an important role in this high IR% 
due to its positive charge and its mucoadhesivness prop-
erties which improve the cellular uptake and penetration 
of cell membrane.

Potential application of external magnet in real life
Magnetically guided drug delivery involves an external 
magnetic field to deliver nanoparticles to a desired tar-
get area where the medication is needed. The advantage 
being that the dosage of the medication can be reduced 
and the systemic effect of the drugs can be reach the min-
imum level. The superparamagnetic behavior implies that 

its magnetization disappears once the external magnetic 
field is removed [30, 31]. Based on these properties, the 
superparamagnetic nanoparticles could be transported 
through the vascular system, concentrated in a specific 
area with the aid of a magnetic field, with substances to 
assure their cellular internalization and activate the prop-
erties of magnetic drug targeting and release in specific 
organ.

Biological tissue is nearly ‘transparent’ to magnetic 
energy, and magnetic fields pass through tissue without 
being significantly absorbed or distorted by body tissues. 
Magnetic nanoparticles introduced into the body can 
therefore allow for high local energy delivery to the par-
ticles, compared to the less magnetic surrounding tissue. 
As a result, magnetic fields and magnetically responsive 
particles can be harnessed for therapy and drug delivery, 
particularly in cancer [61].

Two approaches are most common: (i) the use of 
magnetic particles to improve the accumulation of 
drugs in a desired region via magnetic targeting [59, 
60]; and (ii) the use of magnetic fields to heat magnetic 
particles to directly induce hyperthermia in or ablation 
of diseased tissues [61] and/or to trigger the release of 
drugs from thermally-sensitive carriers [62, 63].

Magnetic drug delivery strategies rely on transfer-
ring externally applied magnetic energy to magnetic 
particles that have been introduced into the body [64]. 
One of the most commonly used magnetic particles for 
drug delivery are superparamagnetic iron oxide nano-
particles (SPIONs). Unlike ferromagnetic materials, in 
which materials are permanently magnetized, paramag-
netic materials are magnetized only when placed into 
an applied field. When the magnetic field is removed, 
the moments revert to a random orientation [65].

Magnetic targeting, also referred to as magnetopho-
resis, has been proposed as a potential mechanism to 
improve the accumulation and penetration of magnetic 
drug carriers in tumors [58]. For magnetic targeting, 
drug and magnetic nanoparticles are encapsulated into 
a nanocarrier, and a strong external static magnet is 
used to accumulate the drug carrier at a target near the 
static magnet. For example, Marie et  al. used a static 
external magnet to encourage magnetoliposome accu-
mulation in glioblastoma tumors in mice [66], while 
Huang et  al. have developed and tested doxorubicin 
loaded magnetic micelles in a squamous cell carcinoma 
model in rabbits [67]. Magnetic targeting has even been 
validated in humans. In fact, as early as 1996, Lübbe 
et  al. showed that magnetic drug targeting could be 
used to concentrate epirubicin-conjugated nanoparti-
cles in sarcomas in phase I and II clinical trials [68, 69].

Several types of iron oxide nanoparticles are US 
Food and Drug Administration (FDA)-approved for 
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use in magnetic resonance imaging (MRI) as contrast 
agents that can improve image resolution and informa-
tion content. New imaging modalities, such as mag-
netic particle imaging (MPI), directly detect magnetic 
nanoparticles within organisms, allowing for back-
ground-free imaging of magnetic particle transport and 
collection [30].

“Lab-on-a-chip” technology benefits from the increased 
control that magnetic nanoparticles provide over separa-
tion, leading to improved cellular separation. Magnetic 
separation is also becoming important in next genera-
tion immunoassays, in which particles are used to both 
increase sensitivity and enable multiple analyte detection.

More recently, the ability to manipulate material 
motion with external fields has been applied in magneti-
cally actuated soft robotics that are designed for biomed-
ical interventions.

Magneto thermal treatments have been approved in 
the European Union (EU), and they were also approved 
by the US Food and Drug Administration (FDA) in 2006 
for phase I clinical trials in the treatment of prostate 
cancer.

Briefly, magneto thermal heating occurs when mag-
netic particles are subjected to alternating magnetic 
fields (AMFs). Through magnetic induction, nanoparti-
cles in AFMs are selectively heated, providing for local-
ized increases in temperature.

The programmable robots can generate metachronal 
waves, making them able to crawl and roll, depending on 
the strength of the magnetic field.

Comparison of the cytotoxicity potential of the Cs/
DOX‑Cit‑MNPs and the results of recently published studies
The MTT assay studies of the present work show that 
synthesized Cs/DOX-Cit-MNPs are toxic against MCF-7 
cell line cancerous cells without affecting normal cells.

Taherian et al. [14] studied cytotoxicity of Black pome-
granate peel extract (BPPE) and Black pomegranate 
loaded chitosan-coated magnetic nanoparticles (BPPE-
CCMNPs). They concluded that the MTT and LDH assay 
studies show that the free BPPE and BPPE-CCMNPs are 
toxic against MDA-MB-231 and 4T1 cancerous cells. The 
BPPE-CCMNPs show more cytotoxicity compared with 
free BPPE. Results show that BPPE-CCMNPs cause more 
significant cell viability reduction from 15 to 1000  µg/
ml on both MDA-MB-231 and 4T1 cells at 24 h and 48 h 
incubation in comparison to free BPPE [14]. Accord-
ing to the studies on the pomegranate peel extract, the 
existing phenolic acids and flavonoids are presented 
in soluble-free, soluble esterified and insoluble-bound 
forms. Although it has been reported that the total free 
soluble phenolic and flavonoid compounds are higher 

than their insoluble-bound form, some of the hydroxy-
benzoic acid derivatives have insoluble bonds [69, 70]. 
The insoluble bonds could make it difficult for the BPPE 
to dissolve in cell media that leads to higher cell viabil-
ity compared to BPPE-CCMNPs. On the other hand, 
CCMNPs cover the BPPE to avoid additional molecular 
reactions and increase the efficiency of the drug. It has 
been determined that the CCMNPs can have interaction 
with the negative domain of the cell membrane by elec-
trostatic interactions owing to the positive zeta potential 
of the CCMNPs [71]. Furthermore, they are taken up by 
cells through endocytosis, in which the pathway begins at 
a pH of 7.4 and ends at pH 4.5 in lysosomes that most of 
the BPPE from CCMNPs would release [39].

In another study, the cytotoxicity studies on borte-
zomib as a highly water-insoluble drug in free form and 
loaded to CCMNPs also revealed that IC50 of the drug-
loaded CCMNPs was much lower than the free drug 
which demonstrates the role of CCMNPs in drug effi-
ciency improvement [72].

For instance, Song et al. have synthesized magnetic alg-
inate chitosan NPs and used curcumin as a polyphenol-
rich compound as a loading drug. Cellular uptake results 
on MDA-MB-231 and HDF cells have revealed that at 
the highest studied concentration, about 80% and 50% 
of curcumin and curcumin-loaded NPs are taken up by 
MDA-MB-231 and HDF cells, respectively [73]. The cyto-
toxicity studies showed that neither curcumin nor the 
drug-loaded NPs were toxic against HDF normal cells, 
but significant toxicity was observed in MDA-MB-231.

Comparing with nanocarrier-loaded standard chemo-
therapeutics, Rahimi et  al. have synthesized dendric 
chitosan grafted polyethylene glycol MNPs and used 
doxorubicin and methotrexate as the loading agents. The 
combination of the two chemotherapeutic drugs loaded 
to NPs at 5 µg/ml caused MCF-7 cell viability reduction 
to about 30% after 48 h of incubation [74].

In another study, Vijayan et  al. evaluated paclitaxel-
loaded poly (lactic-co-glycolic acid) NPs on different 
MDA-MB cell series. At the concentration of 10  µg/ml, 
the cell viability of the MDA-MB-157, MDA-MB-231, 
MDA-MB-435, MDA-MB-436, and MDA-MB-468 
incubated with paclitaxel-loaded NPs were 44.4 ± 1.2%, 
34.6 ± 0.8%, 42.4 ± 1.4%, 35.3 ± 0.8%, 55.2 ± 0.8%, in that 
respect [75].

Conclusion
In the present work, biocompatible and  biodegradable 
Cs/DOX/Cit-MNPs nano carrier for DOX was success-
fully prepared which protect normal cells from the side 
effects of DOX and offer binary- targeting for tumor 
cells through magnetic targeting and pH sensitive 
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release with better cellular uptake. The synthesized 
nano carriers are spherical particles with diameter that 
ranges between 7 and 45  nm. The crystalline structure 
for both was confirmed by XRD to be pure magnetite 
 (Fe3O4). The magnetic properties of MNPs were inves-
tigated by (VSM) to be 60  emu/g for naked, 55  emu/g 
for Cit-Fe3O4 and 48 emu/g for Cs/DOX/Cit-MNPs. The 
in-vitro release of DOX from Cs/DOX/Cit-MNPs, was 
found to be pH dependent. The internalization mecha-
nisms of free DOX and Cs/DOX-Cit-MNPs are differ-
ent. As free DOX diffuses through the cell membrane 
but Cs/DOX-Cit-MNPs are internalized to the cells by 
endocytosis. The CS/DOX-Cit-MNPs offer a sustained 
release for DOX through the chitosan shell with low IR% 
in the first 24  h. Then it increased to reach 76 ± 0.10% 
after 72 h without magnetic directing. By using an exter-
nal magnet the IR% of CS/DOX-Cit-MNPs increased to 
reach 71 ± 0.07% in the first 24  h and 98 ± 0.04% after 
72 h. The MTT assay studies of the present work show 
that synthesized Cs/DOX-Cit-MNPs are toxic against 
MCF-7 cell line cancerous cells without affecting nor-
mal cells. The Cs/DOX/Cit-MNPs offer a very protec-
tive mode for normal cells compared to the free DOX.
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