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Abstract 

Metal organic frameworks (MOFs) have received a lot of attention in the research community due to their unique 
physical properties, which make them ideal materials for targeted drug delivery systems. In this paper, we describe 
the synthesis of a non-toxic La-based MOF with 3,4-dihydroxycinnamic acid (3,4-DHCA) as a linker. Scanning electron 
microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), fourier transform 
infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), nitrogen adsorption–desorption measurements, and 
X-ray powder diffraction (XRD) have all been used to characterize it thoroughly. The La-based MOF showed good 
biocompatibility with the human breast cancer cell line MDA-MB-468. The ability of 3,4-DHCA to treat MDA-MB-468 
cells was confirmed by 40.35% cell viability with La-based MOF. Based on the findings, La-based MOF can be recom-
mended as a promising candidate for anticancer delivery.
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Introduction
A group of lattice solids characterized by crystalliza-
tion and porosity are called metal–organic frameworks 
(MOF), and major research has been done on the shape, 
surface, and pore measurements [1, 2]. The MOF com-
pounds are the result of the binding of metal cations by 
organic ligands and are used in various fields, including 
drug delivery [3], gas storage [4], luminescent [5] and 
anticancer [6]. Due to the adjustable construction and 
chemical properties that change and function, MOF 
has many advantages over other drug delivery systems 
[7–9]. However, the high porosity and large surface 

area of MOFs have resulted in high loading and adsorp-
tion capacity, so poor coordination interaction ensures 
the biodegradability of MOFs [10]. MOFs have a major 
impact on colloid stability, cell uptake, and drug release 
profiles, [11, 12]which is highly desirable for pharma-
ceutical applications due to its surface properties and 
size [13]. MOFs have anti-cancer properties, for exam-
ple Cu-MOF [14], Al-MOF [15], Sr-MOF [16], Co-MOF 
[17], Zn-MOF [18] and Zr-MOF [19] mentioned. Several 
research articles have recently reported on MOF and 
MOF-derived nanocomposites as gas sensor [20–22]. 
Nguyen and coworkers developed porous zeolitic imi-
dazolate frameworks for fluorescent chemosensors [23], 
and the same group developed Zr-MOF as a nano adsor-
bent to remove toxic organic dye for water remedia-
tion [24]. Dang and coworkers developed Hf-MOF and 
Fe(III)-MOF using a one-pot three-component reaction 

Open Access

BMC Chemistry

*Correspondence:  g.sargazi@gmail.com

5 Noncommunicable Diseases Research Center, Bam University of Medical 
Sciences, Bam, Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-022-00886-y&domain=pdf


Page 2 of 9Safinejad et al. BMC Chemistry           (2022) 16:93 

with high porosity and surface area for catalytic applica-
tions [25, 26].

3,4-Dihydroxycinnamic acid contributes to plant 
defence mechanisms against predators, pests, and infec-
tions by inhibiting the growth of insects, fungi, and bac-
teria and promoting the protection of plant leaves against 
ultraviolet radiation B (UV-B) [27, 28]. CA and its deriva-
tives have been studied in vitro and in vivo, and numer-
ous physiological effects, such as antibacterial [29, 30], 
anti-hepatocarcinoma (HCC) [31], antioxidant [30, 32, 
33], anti-inflammatory [30, 32, 33], anticancer [32, 33], 
and anti-hepatocellular carcinoma activity [34] have been 
demonstrated. HCC (hepatocellular carcinoma) is one 
of the leading causes of cancer death worldwide, hence 
anti-HCC activity is essential [35]. As a result, additional 
research on the chemical and pharmacological properties 
of CA is required to contribute to the future development 
of a novel medicine and, as a result, the extension of ther-
apeutic possibilities [31]. Recently, Rao and coworkers 
have reviewed the development of MOFs for both in vivo 
and in  vitro drug delivery application [36]. Chemody-
namic therapy (CDT) and chemo photodynamic therapy 
(CPT), which inhibits tumors cell growth and division, 
are recognized as a potential pharmacological technique 
used to treat cancer [37, 38]. Tan and coworkers evalu-
ated and discussed various MOFs for their CDT use [39]. 
Table 1 lists various MOFs and their preparation routes, 
crystallite size, BET surface area, and action on cell lines.

Lanthanum has recently been reported as an effective 
drug for the treatment of malignant tumors. For exam-
ple, in human cervical carcinoma cells, lanthanum com-
plex has shown significant cytotoxicity in the laboratory 
[45–47].  LaCl3 also reduced the growth and triggered 
apoptosis in leukemia cell lines,  HL-60 and NB4 [48]. 
Furthermore, lanthanum has been linked to the inhibi-
tion of human stomach cancer cells’ proliferation [49]. 
All of these findings revealed that lanthanum, a rare earth 
element, has the ability to regulate tumor growth [50].

In this study, lanthanum-MOFs (La-MOFs) with link-
ers of 3,4-dihydroxycinnamic acid (3,4-DHCA) was 

prepared with a ultrasonic reverse micelle assisted. it was 
characterized using XRD, TEM, EDS and TGA. It was 
also tested for anticancer properties.

Experimental
Materials and apparatus
Sigma-Aldrich Corporation was chosen to purchase 
 C12H25NaSO4 (sodium dodecyl sulfate) and 8  mL 
of  C6H14. Merck & Co., Inc. was selected to prepare 
La(NO3)3∙6H2O (lanthanum nitrate hexahydrate) and 
 C9H8O4 (3,4-dihydroxycinnamic acid).

Each material has been of analytical grade with the 
increased purity. The Iranian Biological Resource Center 
(IBRC; Tehran, Iran) provided a human breast can-
cer (MDA-MB-468) cell line. Trypsin/EDTA solution, 
3-(4,5-dimetylthiazol-2-Yl)–2,5–diphenyltetrazolium 
bromide (MTT), Dulbecco’s modified Eagle’s medium 
(DMEM), fetal bovine serum (FBS), phosphate-buff-
ered saline (PBS), and dimethyl sulfoxide (DMSO) were 
acquired from Gibco BRL and Sigma, respectively. They 
were developed in DMEM (Gibco, UK) supplemented 
with 10% FBS (Gibco) and 1% penicillin–streptomycin 
(Gibco) and incubated at 37  °C in a 5%  CO2 environ-
ment. During the synthesis of MOF, X-ray diffraction 
(XRD) was used to analyze and determine the crystal-
line structure and phases. To accomplish this goal, a 
powder X-ray diffractometer (Expert MPD, pananalyti-
cal, CuK = 0.154.6  nm) was employed in the 2θ = 0–50 
degree range with a step width of 0.01 degree. The surface 
morphology was investigated using a scanning electron 
microscope (FESEM, FEI Nanosem 450). Adsorption/
desorption measurements (BET, Belsorp mini II) at 77 K 
in  N2 environment were used to assess the porosities, 
surface area, and pore textural features of samples. Under 
an Argon environment, thermogravimetric analysis 
(TGA, TA Q600 USA) was performed from room tem-
perature to 400 °C at a heating rate of 10 °C/min. The cell 
viability was determined using an ELISA reader (Bio-Tek, 
Elx 808, Germany) at k = 545 nm.

Table 1 MOFs and their anticancer activities on various cell lines

MOFs Methods Particle size; surface area Cell line Refs.

Cu-MOF Ultrasonic assisted reverse micelle less than 100 nm; 284.94  m2/g MCF-7 [18]

Y-MOF Microwave and ultrasonic irradiation 25 nm, 1267  m2/g MCF-7 [40]

Doxorubicin@Zr-MOF) One-pot conventional synthesis – MCF-7 and HepG-2 [41]

Zeolitic imidazolate crystal framework One-pot conventional synthesis 250 nm; 495.199  m2 g − 1 MCF-7 [42]

Nano Zr-MOF One-pot conventional synthesis less than 100 nm; 2296  m2 /g MCF-7/ADR cell and CD44 [43]

5-fluorouracil loaded Cu-MOF One-pot conventional synthesis 281 nm, 628  m2 /g A549 and HeLa [44]

Co-MOF Solvo-thermal synthesis less than 100 nm; 865  m2 /g HepG, CHO, HeLa, BEAS-2B, 
MDA-MB-231 and NCI-H460

[45]
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Fig. 1 A FE-SEM image and B TEM image. C XRD pattern D FT-IR spectrum of the La-based MOF
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Preparation of aqueous extract of satureja hortensis
To make S. hortensis aqueous extract, combine 25 g of dry 
Satureja cut (harvested from Golboft in Kerman province 
of Iran, 2018) in clevenger-type apparatus with 250 mL of 
distilled water for 1.5 h, then cool and filter three times 
with centrifugal spinning machine at 3000  rpm. The 
extract was kept in refrigerator for future uses.

We confirmed that all the relevant permission to col-
lect S. hortensis were obtained from the governing body. 
We are thankful to Prof. Gholamhossein Shahidi Bonjar 
who undertook the formal identification of the S. horten-
sis used in our study. The voucher ID for this plant was 
18/D3713.

Synthesis of La‑based MOF
During the preparation of the specimens using the ultra-
sonic aided approach, La(NO3)3.6H2O (Control group: 
19.0  g NaCl, 16.0  g KCl, 3.0  g  C5H8NO4Na and 1.1  g 
 C12H22O11). and 3,4-DHCA were mixed with 1:1  mmol 
and dissolved in 21  mL of double distilled water. The 
resultant solution was mixed with 0.077  mmol sodium 

dodecyl sulphate and 8  mL hexane. The resulting mix-
ture was then agitated for 1 h at 85 °C. The obtained solu-
tion was placed in the ultrasonic device and exposed to 
ultrasonic irradiation under optimal conditions, which 
included an ultrasonic time of 21 min, an ultrasonic tem-
perature of 40  °C, and a power of 175 W. After 30 min, 
La-MOF crystals develop, which are centrifuged and 
washed with DMF. Using 75% of the ultrasonic power at 
80 °C, a very high yield of 92.31% La-MOF was obtained.

Cytotoxicity
To begin treatment, 5 ×  103 cells/well were seeded in 
96-well flat-bottomed plates overnight; the cells were 
then subjected to different doses of the herbal extract 
(0–100.0  M) and La-based MOF (0–100.0  M) for 48  h. 
After removing the medium, 200 μL of MTT solution 
(5 mg/mL in PBS) was applied to each well and incubated 
for 4  h at 37  °C. Following the removal of the solution, 
100 μL of DMSO was added to the plates, which were 
shaken for 15  min. Using an ELISA microplate reader, 
the absorbance of each sample was measured at 570 nm. 

Fig. 2 EDX map images of La-based MOF. Inset: Digital photograph of a dragon’s head
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The results were expressed as a percentage of cell viability 
compared to untreated control cells.

Results
The surface morphology of the La-based MOF was stud-
ied by SEM micrograph (Fig.  1A and B). The crystallite 
size, phase structure and crystallinity of the La-based 
MOF were studied by XRD analysis. The XRD spectrum 
of La-based MOF is shown in Fig. 1C. The thermogravi-
metric analysis of the La-based MOF was carried out to 
determine the exact temperature needed for its decom-
position. This could be further experimentally confirmed 
by the EDX elemental analysis of the sample shown in 
Fig.  2. Figure  3 illustrates the thermal analysis of La-
based MOF as a final product.  N2 adsorption–desorption 
analysis was used to explore the textural features of La-
based MOF.

Figure  5 shows how the MTT test was used to assess 
the anticancer activity of the La-based MOF and 3,4-
DHCA in a human breast cancer cell line in vitro.

Discussion
Characterization of the La‑based MOF
In the SEM image of La-based MOF can be seen uniform 
surface morphology (Fig.  1A). Besides, the TEM image 
of La-based MOF displayed that the surface of La-based 
MOF was uniform with many cavities in the internal 

zones. Therefore, this structure is capable to diffuse water 
into the beads and release the 3,4-DHCA (Fig. 1B).

The seven characteristic diffraction peaks of La-based 
MOF appeared at 2θ = 14.95°, 20.29°, 25.27°, 30.19°, 
33.28°, 35.56° and 36.80° (Reference code: 96–450-4165) 
(Fig. 1C). No extra-diffraction peak in the XRD spectrum 
confirms the excellent purity and crystallinity of the La-
based MOF. The crystallite size of the synthesized La-
based MOF was estimated by Debye–Scherrer formula 
(Eq. 1).

Here, λ stands for the wavelength of X-ray (1.54056 Å for 
Cu lamp), θ stands for half of the Bragg diffraction angle 
and β stands for half of the width of maximum intensity 
diffraction peak. The mean crystallite size of La-based 
MOF was 42 nm.

The FTIR spectrum of La-MOF is depicted in Fig. 1D. 
The La-MOF structure contains surface water, which 
causes the O–H broad stretching band to appear at 
3387   cm−1. C–H stretching is responsible for a sharp 
band at 2911   cm−1. The bands shown at 1602 and 
1377  cm−1 are attributed to the coordinated carboxylate’s 
asymmetrical and symmetrical stretching modes, respec-
tively. According to C–O stretching in La-MOF, a band 
that developed at 1139  cm−1.

(1)D =

0.9�

βcosθ

Fig. 3 Thermal gravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG) curves of La-based MOF
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As seen in Fig. 2, the EDS mapping images for La-based 
MOF confirmed uniformly dispersion of each lantha-
num, carbon and oxygen elements. If we consider the 
shape of the MOF as a dragon head, the distributions of 
the elements are as follows: the scattering of lanthanum 
is regularly on the dragon head and the carbon is evenly 
distributed on the background of the dragon head and 
the oxygen is evenly distributed throughout.

TGA-DTA thermograms for La-based MOF is shown 
in Fig.  3. La-MOF exhibit a two stage decomposition 

process. The first stage decomposition starts at 150–
204  °C, which may be due to removal of bound water 
and carboxylate groups as  CO2 present in the La-MOFs. 
In the second stage, the main decomposition starts at 
270  °C and end up at 450  °C, which corresponds to the 
loss of side chain attached to the aromatic nucleus. La-
MOF exhibits reasonable thermal stability even at high 
temperatures, as confirmed by TGA and DTA data.

Figure  4a depicts type IV hysteresis loops in the pre-
pared La-based MOF. This isotherm demonstrates the 

Fig. 4 A  N2 adsorption–desorption isotherms La-based MOF; B BJH results obtained for La-based MOF
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mesoporous structure of the material and the parallel 
plate shaped pore. The obtained structural parameters 
such as BET surface area and pore volume of the La-
based MOF were 521  m2.g−1 and 0.075  cm3.g−1, respec-
tively. Figure  4B illustrates the pore size distribution of 
the La-based MOF samples on the basis of the Barrett–
Joyner–Halenda (BJH) method. This figure also illustrates 
that the mean pore size distribution of the La-based 
MOF samples is 8.3  nm, which means the microporous 
size distributions of the products. It may be an indicative 
that the La-based MOF remained a wide pore opening 
and a high porosity, leading to the La-based MOF is one 
of the best carrier.

In vitro cytotoxicity studies
The values of cell viability found for the La-based MOF 
and 3,4-DHCA are 40.35% and 68.29%, respectively. 
Figure  5 shows that the La-based MOF antitumor 
behavior is greater compared to the 3,4-DHCA. La-
based MOF passes through the cell membrane more 
easily than 3,4-DHCA. Thus, it facilitates the penetra-
tion of La-based MOF into cancer cells while improv-
ing its antitumor behavior. The anticancer behavior 
of La-based MOF may be described according to the 
concept of chelation. The polarity of metal ions may 
be significantly reduced by chelation because the posi-
tive charge is partly shared with the donor groups and 

also due to the displacement of electrons in the chelate 
ring. The concentration of metal ions may be exac-
erbated by the lipophilic properties of chelates and 
the interaction between the cell wall and metal ions. 
The geometries and charge dispersion of the La-based 
MOF molecule are compatible with the cancer cell wall, 
which increases penetration through the cell wall. Such 
a unique structural arrangement can break down the 
cell’s permeability barrier and disrupt the normal pro-
cess of the cell.

Conclusion
Summery, in the first step, La-based MOF was pre-
pared and characterized. The preparation of La-based 
MOF was approved by the SEM, TEM, EDX, TGA, BET 
and XRD analysis. In addition, in vitro anticancer activ-
ity results showed that La-based MOF can inhibit the 
growth of MDA-MB-468 cells line as a human breast 
cancer cell. The anticancer activity of the La-based 
MOF was more than in the 3,4-DHCA. Based upon the 
results of corresponding experiments, La-based MOF 
exhibited high 3,4-DHCA drug loading, cancer-tar-
geted release and good biocompatibility, which can be 
used as a good candidate for anticancer drug delivery 
system.

Fig. 5 Plots of percentage of cytotoxicity vs. concentrations of the 3,4-DHCA (0–100.0 μM) and La-based MOF (0–100.0 μM) against human breast 
cancer cells after incubation for 48 h
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