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Abstract 

Nuclear magnetic resonance (NMR)-based relaxometry is widely used in various fields of research because of its 
advantages such as simple sample preparation, easy handling, and relatively low cost compared with metabolomics 
approaches. However, there have been no reports on the application of the T2 relaxation curves in metabolomics 
studies involving the evaluation of metabolic mixtures, such as geographical origin determination and feature 
extraction by pattern recognition and data mining. In this study, we describe a data mining method for relaxometric 
data (i.e., relaxometric learning). This method is based on a machine learning algorithm supported by the analytical 
framework optimized for the relaxation curve analyses. In the analytical framework, we incorporated a variable optimi-
zation approach and bootstrap resampling-based matrixing to enhance the classification performance and balance 
the sample size between groups, respectively. The relaxometric learning enabled the extraction of features related to 
the physical properties of fish muscle and the determination of the geographical origin of the fish by improving the 
classification performance. Our results suggest that relaxometric learning is a powerful and versatile alternative to 
conventional metabolomics approaches for evaluating fleshiness of chemical mixtures in food and for other biologi-
cal and chemical research requiring a nondestructive, cost-effective, and time-saving method. 
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Introduction
Nuclear magnetic resonance (NMR) spectroscopy is one 
of the most versatile tools for chemical analysis in the 
fields of chemistry and biology [1]. NMR can be used to 
evaluate complex chemical and biological mixtures (e.g., 
those used in metabolomics studies), which character-
ize the metabolic profiles of a large number of samples 
derived from biological and environmental systems [2]. 

NMR-based metabolomics is used to determine geo-
graphical provenance, solve problems related to food 
fraud, and certify a “terroir” in food chemistry [3]. How-
ever, conventional NMR-based metabolomics approaches 
require relatively high-field NMR instruments to obtain 
high-resolution NMR spectra. Therefore, although recent 
advances in benchtop NMR instruments have been 
accompanied by increasing employment of low-field and 
benchtop NMR spectroscopy in NMR-based metabo-
lomics studies, the practical utilization and on-site appli-
cation of NMR-based metabolomics are limited [4].

As an alternative to metabolomics approach, NMR-
based relaxometry has several advantages, including 
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compatibility with low-field and compact NMR instru-
ments, simple sample preparation, easy handling, and rel-
atively low cost compared with metabolomics approach 
[5]. Therefore, NMR-based relaxometry is widely used 
in various research fields and industries such as the food 
industry, polymer industry, pharmaceutical industry, 
and geology. However, the application of the T2 relaxa-
tion curves obtained by relaxometric measurements to 
biological studies has not yet been reported in terms of 
the characterization and evaluation of chemical mixtures 
to determine the geographical origin and achieve feature 
extraction by pattern recognition and data mining.

The T2 relaxation curves obtained by relaxometric 
measurements appear to be relatively simple compared 
with the 1H NMR spectra obtained in conventional 
metabolomics studies. However, the T2 relaxation curves 
derived from complex chemical mixtures (e.g., fish and 
vegetables in the field of food chemistry) are likely to 
show slightly different profiles for each sample because 
of complex bound water states and interactions that are 
affected by the higher-order structure of macromole-
cules, although discerning such small differences by eye 
is usually difficult (Additional file 1: Fig. S1). With this in 
mind, we speculated that data mining methods such as 
multivariate analyses and machine learning (ML) could 
be applied to discover valuable information buried in T2 
relaxation curves.

Multivariate analysis methods such as principal com-
ponent analysis, partial least squares (PLS), and soft 
independent modeling of class analogy [6] have been 
used to analyze relaxometric data [7–9]; however, the use 
of ML methods for such analyses has not been reported. 
Compared with multivariate analyses, ML methods are 
known to be superior for metabolomics studies in some 
situations [10], and several useful ML-incorporated ana-
lytical tools have been reported (e.g., MetaboAnalyst [11] 
and KODAMA [12]). In a previous work, we success-
fully developed several ML-based analytical approaches, 
namely, a prediction method for metabolic mixture sig-
nals [13], deep neural network (DNN)–mean decrease 
accuracy [14] and ensemble DNN [15] methods, variable 
selection for regional feature extraction [16], evaluation 
of surface water [17], impact estimation of food intake 
on mice [18], and evaluation of daily dietary intakes of 
humans [19] in metabolomics studies. Thus, we consid-
ered that an analytical method for T2 relaxation curves 
combined with ML might be a helpful tool for metabo-
lomics studies and could be used to discriminate between 
geographical origins and extract features pertaining to 
sample attributes.

In this study, we describe a technique called relaxo-
metric learning, which is a pattern recognition method 
for T2 relaxation curves that can be used as a simple and 

cost-effective tool for the data mining of complex chemi-
cal and biological mixtures (e.g., fish samples in food 
chemistry) as an alternative to conventional metabo-
lomics approaches. To develop the relaxometric learn-
ing, an analytical framework optimized for data mining 
of T2 relaxation curves was required. Therefore, we 
also developed an analytical framework for eliciting the 
improved classification performance of ML algorithms 
to enhance the performance of relaxometric learning. In 
the analytical framework, we incorporated two methods 
into the ML process: a variable optimization approach 
to enhance the classification performance and bootstrap 
resampling-based matrixing to balance the sample size 
between groups. As a model case, we selected the sup-
port vector machine (SVM) [20] approach for analyzing 
the T2 relaxation curves obtained by NMR-based relaxo-
metric measurements because SVM has been reported 
to be useful for analyses with a relatively small number 
of samples [21]. The classification performance of relaxo-
metric learning was evaluated on the basis of the physi-
cal properties (hardness and tenderness) of fish muscles 
determined by the hierarchical cluster analysis (HCA) 
of compressive force data measured by an autograph 
machine in a data-driven manner. The applicability of 
the analytical framework to other ML methods was also 
evaluated.

Materials and methods
Sample collection
A total of 233 fish samples belonging to 34 families were 
collected from April 2012 to November 2018 at mul-
tiple coastal sites in Japan (Additional file  1: Table  S1). 
There is no specific permission required for all of the 
sampling points as they are all public places. The animal 
experiments were performed in accordance with proto-
cols approved by the Institutional Committee of Animal 
Experiment of RIKEN and adhered to the guidelines in 
the Institutional Regulation for Animal Experiments and 
Fundamental Guidelines for Proper Conduct of Animal 
Experiment and Related Activities in Academic Research 
Institutions under the jurisdiction of the Ministry of Edu-
cation, Culture, Sports, Science and Technology, Japan. 
Among these samples, 233 and 209 samples (the differ-
ent sample number was due to insufficient volume of 
fish muscles) were used for compressive force measure-
ments by autograph and NMR measurements to obtain 
T2 relaxation curves, respectively.

Compressive force measurements by autograph
Since the relaxation properties and water contents in fish 
muscle could be varied according to position differences 
[22], fish muscle above the anal fin was picked to avoid 
the impact of position differences and cut into slices 
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(5  mm thick and 10  mm wide) (Additional file  1: Fig. 
S2A). Stress testing (n = 5 per sample) was performed 
using a multipurpose stretching tester comprising an 
autograph (EZ-L, Shimadzu Co. Ltd., Kyoto, Japan) with a 
wedge-shaped cutter bit (Additional file 1: Fig. S2B). The 
parameters were controlled using TRAPEZIUM2 (ver. 
2.36, Shimadzu), which is the manufacturer-supplied 
software. The loading rate was 2 mm min−1, the total dis-
tance was 5  mm (Additional file  1: Figs. S2C and S2D), 
and the force–time curves were recorded (Additional 
file 1: Fig. S2E). A total of 1165 curves were obtained in 
the measurements.

The force–time curves for fish muscle were trans-
formed into force–distance curves, with the zero point 
determined by the contact between the sample and the 
cutter bit. The portions of the curves between 0 and 
3.63  mm were selected (34 curve data were omitted in 
this process due to the insufficient length (thickness)), 
and exponential fitting was performed in Microsoft Excel 
by using the following equation:

where x represents the distance from the starting (zero) 
point, y represents the compressive force, and a and b 
represent the fitting coefficients.

A total of 1131 sets of compressive force data were 
preprocessed, and coefficients a and b were calculated 
by approximating the exponential function. Coefficients 
a and b were further analyzed using a data-driven HCA 
approach, which indicated that each sample could be 
categorized into two groups on the basis of the physi-
cal properties (i.e., hardness and tenderness) of the fish 
muscle (Additional file 1: Fig. S3). The fish belonging to 
group A had relatively hard muscles compared with those 
in group B.

NMR measurements to obtain T2 relaxation curves
A piece of fish muscle (n = 3 per sample) was loaded 
into a 5  mm NMR tube inserting a 2  mm NMR tube 
filled with 99.9%  D2O solvent for locking. T2 relaxation 
curves were recorded at 298 K on a high-resolution NMR 
spectrometer (AvanceIII HD-500, Bruker, Rheinstetten, 
Germany) equipped with a 1H inverse probe with triple 
resonance by using the Bruker standard pulse program 
“cpmg_T2_1d” (Carr–Purcell–Meiboom–Gill sequence) 
with 1 scan, 512 data points, and 1.024 s acquisition time. 
The obtained raw data were normalized by unit variance 
and used for further analyses.

Data analysis
HCA was performed using Ward’s method and was 
implemented using the “hclust” function in the R 

(1)y = aebx,

software package (version 3.2.2) [23]. SVM, random for-
est (RF) [24], and PLS were performed using the e1071 
[14], randomForest [14], and pls [25] libraries, respec-
tively, with repeated (10 times) double cross-validation 
(CV) [2] in R. In the double CV, threefold CV and five-
fold CV were used for the hyperparameter optimization 
and performance evaluation of the constructed models, 
respectively (Fig.  1). The SVM hyperparameters were 
evaluated at the ranges of 0.0001 to 1 for gamma and 1 to 
1000 for cost, and the most frequently determined values 
in the hyperparameter optimization process of the dou-
ble CV were 0.03 and 5 for gamma and cost, respectively. 

Fig. 1 Analytical flow of relaxation curve data during relaxometric 
learning. Compressive force data analyzed by HCA were used as 
explanatory variables for the analyses of T2 relaxation curves in a 
data-driven manner. The relaxation curves were preprocessed and 
analyzed by ML incorporating an analytical framework including a 
variable optimization approach and bootstrap resampling-based 
matrixing. The results obtained for each classifier were finally 
integrated, similar to that in ensemble learning
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Receiver operating characteristic (ROC) curves and the 
area under the curve (AUC) were calculated using the 
ROCR library [26].

Results and discussion
Classification performance of SVM for T2 relaxation curve 
data
The applicability of ML algorithms to the data mining of 
T2 relaxation curves was firstly evaluated because such 
analyses have not been reported in the literature, and 
several ML approaches have shown relatively good per-
formance in classification problems compared with mul-
tivariate analyses [14]. Conventional SVM classification, 
which is a typical ML method, was performed using cat-
egory information from two groups of compressive force 
data as explanatory variables for the T2 relaxation curve 
data (a total of 627 curves) of various fish muscle sam-
ples collected from multiple coastal sites in Japan. Unfor-
tunately, the classification performance was worse than 
expected; the AUC, accuracy, correctly classified rate for 
group A (CCR-A), and correctly classified rate for group 
B (CCR-B) were 0.780, 0.748, 0.475, and 0.865, respec-
tively (Additional file 1: Table S2).

Variable optimization to enhance the classification 
performance
To improve the SVM classification performance, we used 
a variable optimization approach to enhance the quality 
of information obtained from simple T2 relaxation curve 
data. The variable optimization approach employed was 
a search method that determined the best length of raw 
curve to improve the classification performance via the 
reduction of variables from long- to short-relaxation-
time components in sequential order. This variable 
reduction idea is based on the elimination of “noise” vari-
ables, which possibly arise from background noise and/
or from free water, i.e., relatively long T2 relaxation time 
components in the relaxation curve are barely related to 
the characteristic features of samples and were suspected 
of interfering with the accuracy of the SVM learning step.

In this study, the variables were gradually reduced at 
the rate of 10% from all variables (the number of varia-
bles was 256) to 10% usage rate (25 variables) by omitting 
the relatively long T2 relaxation time components. For 
instance, the dataset at 90% usage rate included 230 vari-
ables (from 0 to 0.92 s of T2 relaxation time components) 
and more than 0.92  s of the components was removed. 
The each dataset generated by the variable reductions 
was applied to performance evaluation by SVM classifi-
cation. Based on the classification performance, the opti-
mized number of variables was determined.

The incorporation of the variable optimization 
approach into the SVM classification method improved 

the classification performance for the two groups (Fig. 2). 
The best SVM classification performance was obtained 
with a 10% reduction (90% usage rate) of data points 
(variables) from the T2 relaxation curve, with AUC and 
accuracy values of 0.806 and 0.779. Although the value 
of CCR-A was also improved from 0.475 to 0.538, the 
relatively low value still required improvements to obtain 
satisfactory classification performance.

Bootstrap resampling to balance the sample size 
between groups
The classification performances of conventional SVM 
with and without the above variable optimization 
approach were profoundly affected by the biased sample 
size between groups in the data matrix of the T2 relaxa-
tion curve. To circumvent this difficulty, we focused 
on a bootstrap resampling-based matrixing that con-
structs a matrix (subtraining dataset) by considering 
the evenness of the sample size between groups for the 
model construction of ML classifications (Fig.  1). In 
this approach, the hyperparameters (i.e., the number 
of resamples for balanced matrixing and the number of 

Fig. 2 Performance evaluation of the variable optimization approach 
based on conventional SVM classifications. a AUC (circles) and 
accuracy (diamonds). b CCR-A (triangles) and CCR-B (squares)



Page 5 of 8Date et al. BMC Chemistry           (2021) 15:13  

datasets generated by bootstrap resampling) were evalu-
ated (Fig. 3). When the number of generated datasets was 
set to 100, a slightly better performance was obtained in 
terms of AUC and accuracy compared with only 10 gen-
erated datasets, whereas different resample sizes yielded 
almost the same AUC and accuracy values, except for 
resample sizes below 50 per group (a total of 100 samples 
per dataset). Furthermore, the CCR-A slightly decreased 
with increasing resamples. Therefore, we performed vari-
able optimization combined with bootstrap resampling-
based matrixing by using 100 generated datasets with 150 
resamples (a total of 300 samples) per dataset (Additional 
file  1: Fig. S4). At the 90% level of variable usage rates 
for T2 relaxation curves exhibiting the best SVM classi-
fication performance, the classification performance of 
the constructed analytical framework was significantly 
improved compared with conventional SVM in terms 
of the ROC curve and the AUC value (Fig. 4). The AUC, 
accuracy, and CCR-A values significantly increased from 

0.780, 0.748, and 0.475 to 0.820, 0.771, and 0.710, respec-
tively (Additional file 1: Fig. S5). In addition, robustness 
evaluation of the developed method for fluctuation of 
each variable was performed using datasets generated by 
random resampling based on permutation for a variable 
(Additional file  1: Fig. S6). The fluctuation of each vari-
able had relatively little effect on the SVM classification 
performance using the analytical framework developed 
in this study, indicating that the developed method ena-
bles to construct robust models for variable fluctuation. 
Therefore, the analytical framework described here, 
namely, the incorporation of the variable optimization 
approach and the bootstrap resampling-based matrixing 
into the ML calculations, resulted in improved classifi-
cation performance in the data mining of T2 relaxation 
curve data and enhanced the robustness when using 
unbalanced datasets. Furthermore, the relaxometric 
learning method developed here enabled the extraction 
of features related to the physical properties (hardness 
and tenderness) of fish muscle.

Applicability of the analytical framework to other machine 
learning methods
The analytical framework developed in this study is opti-
mized for data mining of T2 relaxation curve data. Thus, 
we considered that not only SVM but also other ML 
algorithms and multivariate analyses may be useful for 
the data mining of T2 relaxation curve data. To test this 
hypothesis, RF and PLS were used as alternatives to SVM 
for data mining based on the developed analytical frame-
work. The classification performance of RF improved 

Fig. 3 Performance evaluation of the bootstrap resampling-based 
matrixing approach based on conventional SVM classifications. The 
performance of the approach was evaluated with the number of 
datasets generated by the bootstrap resampling set at 100 (closed 
blue symbols) and 10 (open symbols) matrices. a AUC (circles) and 
accuracy (diamonds). b CCR-A (triangles) and CCR-B (squares)
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slightly in terms of the ROC curve and the AUC value, 
and the CCR-A values were significantly improved by 
the incorporation of our analytical framework (Fig. 5 and 
Additional file 1: S7). On the other hand, the classification 
performance of PLS improved drastically in terms of the 
values of both AUC and CCR-A (Fig.  5 and Additional 
file 1: S7). These results suggest that our analytical frame-
work is applicable to various ML algorithms and multi-
variate analyses to enhance classification performance, 
but the extent of improvement is method dependent. 
Therefore, the relaxometric learning approach devel-
oped in this study should find use as a versatile and useful 
method for the analysis of T2 relaxation curve data.

Applicability of relaxometric learning to the determination 
of geographical origin
NMR-based metabolomics approaches are capable of 
determining the geographical origins of food products 
such as fish [14, 16, 27–29], beef [30], durum wheat [31], 
white rice [32], apple [33], cabbage [34], honey [35], cof-
fee beans [36], and wine [37]. Therefore, relaxometric 
learning was also considered applicable for such analyses. 
In addition, the quality of biological tissue (such as water 
content and water activity) in different environment is 
varied according to the geographical origins [38]. Here, 
we proposed that the difference in the water conditions 
could be detected by pattern recognition of T2 relaxa-
tion curves using NMR but not high performance liquid 
chromatography or mass spectrometry methods. Then, 
we performed experiments to evaluate the applicability 
of relaxometric learning to discriminate between geo-
graphical differences (i.e., to extract features in terms of 
the habitats of Girella punctata belonged to Kyphosidae 

fish living in Tokyo Bay and Sagami Bay) based on T2 
relaxation curves (Additional file  1: Fig. S8). The SVM-
based relaxometric learning method exhibited relatively 
good performance in the geographical origin discrimina-
tion of fish compared with conventional SVM, thus lead-
ing to a significant increase in AUC value from 0.886 to 
0.936 (Additional file  1: Fig. S8). These results suggest 
that relaxometric learning is applicable as a method for 
determining geographical provenance, solving prob-
lems related to food fraud, and certifying the “terroir” of 
food, similar to the case for conventional metabolomics 
approaches.

Compact benchtop or portable NMR spectrometers 
are low-cost alternatives to conventional high-field and 
high-resolution spectrometers. Benchtop low-field NMR 
spectrometers can theoretically obtain T2 relaxation 
curves with a similar quality to those obtained with high-
resolution NMR spectrometers, such as the one used in 
this study; therefore, similar classification accuracies can 
be expected. Relaxometric learning using benchtop and 
portable NMR spectrometers even without using  D2O 
might also find applications in on-site quality control 
and fleshiness management, optimization of production 
processes, and improvement of product quality not only 
in food but also in various industrial fields such as poly-
mers, cosmetics, fabrics, pharmaceuticals, and health-
care. Relaxometric learning is expected to be a versatile 
and powerful approach for the characterization and eval-
uation of industrial products and as an option for biologi-
cal and chemical research that requires a nondestructive, 
cost-effective, and time-saving method.

Conclusions
This study focused on the development of a new relaxo-
metric learning method based on the pattern recogni-
tion of T2 relaxation curves. The method is supported 
by an analytical framework incorporating a variable 
optimization approach and bootstrap resampling-based 
matrixing to enhance the classification performance of 
the ML algorithms employed. The developed relaxo-
metric learning approach enabled the extraction of 
several features of fish muscles, such as their physical 
properties and geographical origin, from T2 relaxation 
data. Relaxometric learning was also implemented with 
not only SVM but also other ML and multivariate meth-
ods for the analysis of T2 relaxation data. The SVM-
based relaxometric learning method was superior to 
the conventional SVM method, thus indicating that the 
analytical framework constructed in this study enables 
better classification performance when ML algorithms 
are applied to relaxation curve data. The relaxomet-
ric learning approach is a versatile, cost-effective, and 
time-saving tool for characterizing physical properties, 
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such as the fleshiness of fish muscles; for evaluating 
product qualities, such as geographical origin; and for 
food authentication in biological and chemical samples.
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