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Abstract

Background: One of the main goals of the new chemical regulation REACH (Registration, Evaluation and
Authorization of Chemicals) is to fulfill the gaps in data concerned with properties of chemicals affecting the
human health. (Q)SAR models are accepted as a suitable source of information. The EU funded CAESAR project
aimed to develop models for prediction of 5 endpoints for regulatory purposes. Carcinogenicity is one of the
endpoints under consideration.

Results: Models for prediction of carcinogenic potency according to specific requirements of Chemical regulation
were developed. The dataset of 805 non-congeneric chemicals extracted from Carcinogenic Potency Database
(CPDBAS) was used. Counter Propagation Artificial Neural Network (CP ANN) algorithm was implemented. In the
article two alternative models for prediction carcinogenicity are described. The first model employed eight MDL
descriptors (model A) and the second one twelve Dragon descriptors (model B). CAESAR’s models have been
assessed according to the OECD principles for the validation of QSAR. For the model validity we used a wide series
of statistical checks. Models A and B yielded accuracy of training set (644 compounds) equal to 91% and 89%
correspondingly; the accuracy of the test set (161 compounds) was 73% and 69%, while the specificity was 69%
and 61%, respectively. Sensitivity in both cases was equal to 75%. The accuracy of the leave 20% out cross
validation for the training set of models A and B was equal to 66% and 62% respectively. To verify if the models
perform correctly on new compounds the external validation was carried out. The external test set was composed
of 738 compounds. We obtained accuracy of external validation equal to 61.4% and 60.0%, sensitivity 64.0% and
61.8% and specificity equal to 58.9% and 58.4% respectively for models A and B.

Conclusion: Carcinogenicity is a particularly important endpoint and it is expected that QSAR models will not
replace the human experts opinions and conventional methods. However, we believe that combination of several
methods will provide useful support to the overall evaluation of carcinogenicity. In present paper models for
classification of carcinogenic compounds using MDL and Dragon descriptors were developed. Models could be
used to set priorities among chemicals for further testing. The models at the CAESAR site were implemented in
java and are publicly accessible.

Background
Evaluation of chemical toxicity and human health risk of
compounds are of primary interest, because it drives
much of the current regulatory actions regarding new
and existing chemicals. It is estimated that over 30 000
industrial chemicals used in Europe require additional
safety testing. Traditional animal testing is very costly
and would require the use of extra 10-20 million animal
experiments which is contrary to the policy in EU

member states to replace, reduce and refine the use of
animals in science (the so called 3 Rs policy). In order
to support 3 Rs and REACH policies alternative
approaches like Quantitative Structure-Activity Relation-
ships (QSARs) were proposed [1].
Between different endpoints carcinogenicity is one of

the most essential ones in assessment of human health
safety. A lot of models for prediction of carcinogenic
potency have been published in recent years [2-6]. Some
QSARs models are developed for particular chemical
classes (such as amines, nitro compounds, polycyclic* Correspondence: natalja.fjodorova@ki.si
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aromatic hydrocarbons) [7-9]. A considerable number of
expert systems has been created for the prediction of
carcinogenicity. In some cases different endpoints such
as genotoxicity, mutagenicity and carcinogenicity could
be integrated (for review articles see [10-17]). Models
for non-congeneric chemicals are of great interest for
regulatory use as they involve various classes of chemi-
cals [18,19].
The big challenge in solving the general carcinogeni-

city prediction problem is to construct a model that
would be able to predict carcinogenicity for a wide
diversity of molecular structures, spanning an undeter-
mined number of chemical classes and biological
mechanisms. Quantitative models based on SMILES
[20] for prediction of carcinogenicity were successfully
developed [21,22].
Many statistical approaches can be used for prediction

of complex endpoint such as carcinogenicity. The CAE-
SAR models are in the area of the data mining models
which address complex endpoints. Others models,
which have been developed, are based on toxic residues
codifying human expert knowledge, such as Oncologic
[13], HazardExpert [23], Derek [24], ToxTree [25], or
data mining based on fragments, such as MultiCase
[10,12]. Within CAESAR, the data mining approach has
been improved using a highly verified set of compounds
(all chemical structures have been double-checked, and
experimental data verified in case of some unusual find-
ing, compared to similar compounds), and adopting a
wide series of chemical descriptors. Different algorithms
have been developed, this resulted in a series of models
and one with better performance has been implemented
and reported here.
Predictive power of models is one of the most impor-

tant characteristics in QSAR modeling. In a recent
paper Benigni et al. [26] pointed out that the prediction
reliability should be checked by means of an external
test set with new chemicals not used in modeling. The
state of art and perspectives of predictive models for
carcinogenicity are reported in a recent paper [27]. It
was stressed that the models for regulatory purposes
should be connected with high sensitivity, i.e., the ability
to correctly identify true positives. Preliminary results of
carcinogenicity modeling using CP ANN algorithm
obtained in the scope of CAESAR project are described
in an article [28].
Among statistical approaches, artificial neural net-

works (ANNs) appeared to be one of the most suitable
and promising for prediction of complex endpoint such
as carcinogenicity for non-congeneric datasets of chemi-
cals. The main advantage of neural network modeling is
that the complex, non-linear relationships can be mod-
eled without any assumptions about the form of the
model. Large datasets can be examined. Neural

networks are able to cope with noisy data and are fault-
tolerant [29].
In this paper we presented categorical or qualitative

models for prediction of carcinogenic potency of non-
congeneric chemicals using CP ANN method. Our mod-
els have been developed in accordance with principles of
validation adopted by OECD within the European Com-
mission (EC) funded project CAESAR (Computer
Assisted Evaluation of industrial chemical Substances
According to Regulation) [30].
In our study an external dataset of 738 chemicals was

composed and external validation of models made. In
the paper it is shown how one can increase the number
of correctly predicted carcinogens using correlation
between threshold of categorical models and sensitivity
and specificity. We address the issue of threshold effects
on overall performance of models.
Our final models could serve for the preliminary rank-

ing and prioritization of chemicals for carcinogenic
potency, as required by REACH.

Results and discussion
All CAESAR models for prediction of carcinogenicity
were built in accordance with 5 OECD principles [31]
and are based on a strict quality assurance/quality con-
trol process. In the research activities a parallel or in
some cases collaborative work has been done by differ-
ent partners in the modeling. Indeed, more than one
partner worked in the development of models. This
allowed a scientific cross validation of the results,
because at least indirectly the activity of each group and
the results obtained have been discussed and evaluated
by all partners during the periodic meeting, in which all
models have been presented.
In addition to that, a direct, detailed quality control

and double check of the results has been done individu-
ally for each of the final model which has been devel-
oped and implemented within CAESAR, as present at
the web site.
The models at the CAESAR’s web site [30] have been

implemented in java. This allowed a good portability
and a facility of execution within a client-server
approach.

CP ANN models parameters
A considerable amount of models have been built with
dimensions 20*20; 25*25; 30*30; 35*35; 40*40 and num-
ber of learning epochs from 100 to 1800. Minimal cor-
rection factor was set at 0.01. Maximum correction
factor was set at 0.5. The highest prediction power was
obtained for models with dimension 35*35. Statistical
performance of models with dimension 35*35 depending
on number of learning epochs is represented on Figure
1 and Figure 2 for models with MDL (model A) and
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Dragon (model B) descriptors correspondingly. The
highest accuracy for test set equal to 0.73 was obtained
using 800 learning epochs for model A (see Figure). For
model B the highest accuracy for test set was equal to
0.69 which corresponds to 200 learning epochs. Hence,
optimal dimension for models with MDL and Dragon
descriptors was set equal to 35 *35 neurons. The

number of learning epochs was accepted 800 and 200
for optimal models with 8 MDL and 12 Dragon descrip-
tors, correspondingly.
We have used the software developed in the labora-

tory of chemometrics (National Institute of Chemistry,
Ljubljana, Slovenia), written in FORTRAN for IBM-
compatible PCs and Windows operating system. This

Figure 1 Statistical performance of model with 8 MDL descriptors (model A) and dimension 35*35 depending on number of learning
epochs*. *Optimal model corresponds to 800 learning epochs (accuracy of test set is equal to 0.73)

Figure 2 Statistical performance of model with 12 Dragon descriptors (model B) and dimension 35*35 depending on number of
learning epochs*. *Optimal model corresponds to 200 learning epochs (accuracy of test set is equal to 0.69)
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software program “AnnToolbox for Windows” is aval-
able at home page of National Institute of Chemistry
Slovenia [32].
For categorical models a threshold (cut-off) value of

0.45 was applied for models with 8 MDL descriptors
and 0.5 for model with 12 Dragon descriptors. Chemi-
cals falling in a terminal node with mean response
higher than 0.45 or 0.5 were classified as positive (active
or carcinogens) and chemicals falling in a terminal node
with mean response lower than 0.45 or 0.5 were classi-
fied as negative (inactive or non carcinogens) for model
A and B correspondingly.
In all approaches descriptors serve as independent

variable and biological activities as dependent.

Model using eight MDL descriptors
With 8 MDL descriptors and CP ANN algorithms
described above we produced dozens of models. After
their evaluation one model was accepted as the best one
(Model A). The statistical performance of this model is
presented in Table 1. The Cooper statistics based on
training set indicated an accuracy of 91%, high value of
sensitivity (96%) and specificity (86%). As for test set
(161 compounds) we obtained accuracy equal to 73%,
sensitivity (75%) and specificity (69%). Cross validation
(leave 20% out) results gave us accuracy 66%. By results
of external validation (738 compounds) we have got
accuracy 61.4%. The obtained results indicated that
models possessed good stability. Reliability and robust-
ness of model are high as we get good statistical perfor-
mance for all criteria, on both the internal and external
sets.
In the introduction (background) of this article we

have pointed that the model reliability should be con-
nected with high sensitivity (correctly predicted carcino-
gens) to ensure public safety. Therefore in this paper we
described how changing threshold of model we can
increase sensitivity. Figure 3 shows the accuracy, sensi-
tivity and specificity for test set for model A depending
on threshold. From a regulatory perspective, the higher
sensitivity in prediction of carcinogens is more desirable
than high specificity. Changing the threshold in model
A, we can vary sensitivity and specificity depending on
needs. In the interval of threshold from 0.05 to 0.9 the
accuracy is greater than 60%. Setting on threshold to

0.05 we are able to increase the sensitivity till 90% with-
out considerable reduction of accuracy as it still remain
at the level of 60%. From other hand we can keep in
mind that increasing of sensitivity leads to considerable
reduction of specificity till approximately 20% in case of
threshold 0.05 (see Figure 3).
Another important feature of models for regulatory

purposes is the reproducibility. Therefore the para-
meters of model have to be fixed. The user does not
need to optimize the model parameters. On the Figure 3
it is shown the optimal model performance correspond-
ing to the threshold equal to 0.45.
As an alternative choice Dragon descriptors can be

used for prediction of carcinogenicity using CP ANN
algorithm.

Model using twelve Dragon descriptors
12 Dragon descriptors were selected as was described in
section methods. CP ANN algorithm was employed for
the dataset of 805 chemicals and used in modeling. We
selected an optimal model with dimension of neural net-
work 35*35 and number of learning epochs equal to
200. The threshold was set up at 0.5.
The Cooper statistics of the model with 12 Dragon

descriptors based on the training set (644 compounds)
indicated the accuracy 89%, sensitivity 90% and specifi-
city 87%, and for the test set (161 compounds) the accu-
racy was equal to 69%, sensitivity 75% and specificity
61%. The threshold was set at 0.5. The characterization
of this model B is given in the Table 1.

Validation of models using external set of 738
compounds
The CAESAR applet available on the intranet was used
to predict a set of 738 compounds which were not
used in modelling (not presented in the CAESAR data-
set of 805 chemicals). These chemicals were provided
with carcinogenicity class assigned on the basis of
experiments and extracted from the Leadscope soft-
ware. The predictions obtained for these compounds
are summarized in the misclassification tables (Table 2
and 3 for model with MDL and Dragon descriptors
correspondingly).
Overall the performances obtained with this externally

predicted dataset are as follows:

Table 1 Statistical performance of models using 8 MDL descriptors (Model A) and 12 Dragon descriptors (Model B).

Model A (8 MDL descriptors) Model B (12 Dragon descriptors)

Internal validation Training (644 compounds) Test (161 compounds) Training (644 compounds) Test (161 compounds)

Accuracy, % 91 73 89 69

Sensitivity, % 96 75 90 75

Specificity, % 86 69 87 61
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accuracy = 61.4% and 60.0%; sensitivity = 64.0% and
61.8% and specificity = 58.9% and 58.4% respectively for
model with MDL and Dragon descriptors.

Applicability domain of models
The definition of the applicability domain (AD) of a
QSAR model is very useful to define boundaries whereby
the obtained predicted values can be trusted with confi-
dence. So far no standard solutions have been agreed
within the scientific community to optimally define these
boundaries, but often the proposed solutions rely on che-
mometrics methods. The state of art of methods for iden-
tifying the domain of applicability of (Q)SARs is given in
paper [33]. For carcinogenicity endpoint, as for the mod-
els developed for the other endpoints, CAESAR imple-
mented a tool for the general evaluation of the AD based
on the descriptor range for the dataset; therefore, pre-
dicted values for chemicals outside the descriptor range
can be judged as less reliable. The ranges of implemented
MDL and Dragon descriptors are presented in Table 4
and 5, correspondingly.
This kind of global, chemometric estimation of the

AD does not address two key aspects. Firstly, the chemi-
cal space characterised by the descriptor range does not
take into account the density of compounds distribution,

so it might happen that the target chemical falls in an
area poorly represented in the training set. Moreover,
since the AD relies on the chemical descriptors alone,
the output layer (the property under investigation) is
neglected. To overcome these aspects, CAESAR devel-
oped a further tool for the AD assessment, based on the
measurement, through a similarity score, of the six most
similar chemicals in the training set; it can be used to
evaluate if these compounds are really representative for
the unknown compound. Furthermore, a visualisation of
these compounds is offered, which can be used to inde-
pendently evaluate the compounds. Finally, a quantita-
tive report of the error between the observed and
predicted activity is also provided for these substances,
so that it is possible to argue about wrong behaviour for
the model in the chemical area that better represents
the compound of interest. The CAESAR models can be
accessed through “CAESAR Application” which is a
java-based web application [34].

Structural and chemicals diversity of studies datasets
The structural and chemical diversity of 805 com-
pounds from CAESAR dataset and of 738 chemicals
from Leadscope database (external dataset) is illu-
strated in Figure 4.

Figure 3 Accuracy (ACC), sensitivity (SE) and specificity (SP) of test set (161 compounds) vs. threshold for CP ANN model A.

Table 2 Confusion matrix for external validation set of 738 chemicals of the model obtained with MDL descriptors
(model A).

Leadscope experimental carcinogenicity class

Carcinogens Non-carcinogens

CAESAR predicted carcinogenicity class Carcinogens 231 155

Non-carcinogens 130 222
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In Figure 4 the CAESAR dataset and external dataset
of 738 chemicals are represented in terms of number of
chemicals presenting some functional groups. It can be
noted that the overall picture for CAESAR dataset is
quite similar to that of the external dataset. In both data
sets the majority of specific fragments are as follows:
alcohol, alkene, amines, carbonyl, carboxamide, carboxy-
late carboxylic acid, ether, halide, hydrazine, ketone,
midc nitrogen group, nitro, nitroso, sulfonyl group. In
less quantities the following specific fragments are pre-
sent: aldehyde, alkyne, amidine, carbamate, quanidine,
hydroxylamine, imine, iminomethil, isocyanate, mercap-
tan, misc oxygen group, misc sulfur groups, nitrile,
phosphorous groups, quinines, sulfide, sulfonamide, sul-
fonate, sulfone, sulfonic asid, sulfoxide, thiocarboxamide,
thioxomethyl, urea; acid anhydride, azide present only in
CAESAR set and 2 fragments: organometal and thiocar-
boxylates present only in test set.
Additionally we have extracted from Toxtree program

specific structural alerts (SAs) for each individual chemi-
cal in CAESAR dataset of 805 chemicals. In Table 6 we
have listed the number of chemicals with corresponding
structural alert. The detailed definition of SAs are pub-
lished in paper [35].

Mechanistic interpretation of model
Development of a structure-information approach which
is based on application of different structural descriptors
including the electro topological ones shows the new
opportunities in prediction of biological activity and
properties in contrast to the mechanism based approach
[36-38]. The models based on the pointed above
approaches are established independent of explicit

three-dimensional (3-D) structure information and are
directly interpretable in terms of the implicit structure
information [39]. The authors [36] demonstrated wide
range of applicability of such models for relatively big
datasets (e.g. for prediction of aqueous solubility, AMES
mutagenicity, fish toxicity and others). In the case of
carcinogenicity there are a variety of mechanisms and
pathways, including genotoxic and epigenetic ones that
might play a role in the observed toxic effect. The appli-
cation of structure-information approach which is
“mechanism-free” makes our task simpler and thus fea-
sible because it is not necessary to assume various
mechanistic steps in order to make computations for
such complicated biological property like carcinogeni-
city. This method is free of approximations and compu-
tations related to assumed mechanism of interaction.
This aspect is very important especially for modelling
carcinogenicity using non-congeneric set of substances
and aimed for prediction of a wide diversity of
chemicals.
The MDL and Dragon chemical descriptors selected

within the CAESAR models are presented in Tables 7
and Table 8, correspondingly. The procedure of genera-
tion and selection of descriptors is described in section
“Methods”.
Taking into consideration MDL descriptors (see Table

7), we can see that we deal with electro topological E-
state, connectivity and others descriptors. E-state indices
are a combination of electronic, topological and valence
state information. These indices incorporate information
related to atom, types and electron accessibility, hydro-
gen atom E-states, and connectivities that are influenced
by all of the sub-structural features of a molecule
[40-42]. Elements identity and skeletal connection con-
tains structure information while valence state definition
includes relationship for valence state electro negativity
and atom/group molar volume. Based on these impor-
tant features of molecules, together with skeletal branch-
ing pattern, both the electrotopological state (E-state)
and molecular connectivity (Chi indices) structure
descriptors were successfully implemented for prediction
of genotoxicity and carcinogenicity [18,43,44]. The
authors [44] contend that one of the critical determining
factors for good prediction results depend on nature of
molecular structure representation employed in the
model development process.

Table 3 Confusion matrix for external validation set of 738 chemicals of the model obtained with Dragon descriptors
(model B).

Leadscope experimental carcinogenicity class

Carcinogens Non-carcinogens

CAESAR predicted carcinogenicity class Carcinogens 223 157

Non-carcinogens 138 220

Table 4 The range of MDL descriptors for model A

MDL descriptors
symbol

Min_value of
descriptor

Max_value of
descriptor

SdsCH 0.000 30.74

SdssC_acnt 0.000 18.000

SdsN_acnt 0.000 4.000

dxp9 -0.4009 7.7061

nxch6 0.000 7.000

Gmin -5.0185 2.000

SHCsats 0.000 66.2633

SHBint2_Acnt 0.000 8.000
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A complete set of whole molecular descriptors encode
information on general structure features such as mole-
cular size and shape, as well as specific information on
skeletal variation and complexity. These structural fea-
tures are expected to have a relationship to properties
arising from intermolecular interactions and may also
function to provide discrimination among multiple
structural classes.
The atom-type, group-type, bond-type and single-atom

E-state descriptors encode information on specific mole-
cular features such as atom and bond types associated
with important functional groups. Many of descriptors
relate directly to or associated with structural alerts as
was reported in papers [45,46].
Some of E-state descriptors can be associated with

structural alerts for carcinogenicity. For example, in

Table 5 The range of Dragon descriptors for model B

DRAGON descriptors
symbol

Min_value of
descriptor

Max_value of
descriptor

PW5 0 0.167

D/Dr06 0 1114.64

MATS2p -1.357 1.0

EEig10x -1.0 3.9280

ESpm11x 0.693 19. 939

ESpm09d 0.0 15.483

GGI2 0.0 15.111

JGI6 0.0 0.047

nRNNOx 0.0 2.0

nPO4 0.0 2.0

N-067 0.0 2.0

N-078 0.0 4.0

Figure 4 Representation of CAESAR (left side) and external test set (right panel) in terms of number of chemicals showing specific
fragments, as calculated by Leadscope software.
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Table 7 the SdsN_acount descriptor belongs to atom-
type E-State account descriptors and expresses the
count for the nitrogen atom type = N-associated with
the azo group. The last one is also a structure alert and
is correlated with carcinogenicity [44]. In Table 8
nRNNOx and N-078 descriptors are accounting for
some specific fragments, whose presence is characteriz-
ing for the carcinogenic while the nPO4 descriptor
accounts for non carcinogenic class.
The global E-State descriptor Gmin is a measure of the

most electrophilic atom in the molecule. Mechanisti-
cally, an electrophilic center is important for covalent
bond formation with nucleophilic DNA. This is the rea-
son why this descriptor was found between the most
important descriptors correlated with carcinogenicity.
Hydrogen E-State descriptor SHCsats encodes E-state

values for hydrogens on sp3 hybrid carbons bonded only
other sp3 carbon atoms. The electron accessibility of
these sp3 hydrogens may relate in some manner to
hydrophobic interactions between substrates and DNA
or may have a relation to alkyl chlorides that are known
toxicophores.
Thus, the descriptors used in our study refer to topo-

logical characteristics as well as to polarizability and
charge distribution (related to reactivity).
Interestingly, some descriptors that we applied in our

models were also used by others authors [43,44] in car-
cinogenicity and genotoxicity modelling. It means that
probably in future research it will be possible to find
some common features for modelling carcinogenicity
and genotoxicity. But this issue is not in scope of pre-
sent study.
It should be highlighted that the application of struc-

ture-information approach based on such descriptors
like E-State has the following advantage: a model based
on E-State descriptors (expressed as continuous value)
can correlate carcinogenicity to a specific value of
descriptor, whereas the use of fragment based structural
alerts limits the model to a correlation of presence or
absence of fragments or simple count of given fragments
which can lead to false prediction for this reason.

Table 6 The structural diversity of CAESAR dataset of 805
chemicals by presence of specific structural alerts (SAs)
extracted from ToxTree program.

Structural Alert (SA) Number of
chemicals

SA_2: alkyl (C<5) or benzyl ester of sulphonic or
phosphonic acid

4

SA_3: N-methylol derivatives 2

SA_4: Monohaloalkene 5

SA_5: S or N mustard 7

SA_6 Propiolactones or propiosultones 0

SA_7:Epoxides and aziridines 22

SA_8: Aliphatic halogens 47

SA_9: Alkyl nitrite 1

SA_10: a, b unsaturated carbonyls 0

SA_11: Simple aldehyde 4

SA_12: Quinones 22

SA_13: Hydrazine 32

SA_14: Aliphatic azo and azoxy 7

SA_15: isocyanate and isothiocyanategroups 4

SA_16: alkyl carbamate and thiocarbamate 5

SA_17: Thiocarbonyl 18

SA_18: Polycyclic Aromatic Hydrocarbons 12

SA_19: Heterocyclic Polycyclic Aromatic
Hydrocarbons

5

SA_20: (Poly) Halogenated Cycloalkanes 9

SA_21: alkyl and aryl N-nitroso groups 107

SA_22: azide and triazene groups 3

SA_23: aliphatic N-nitro group 1

SA_24: a, b unsaturated aliphatic alkoxy group 1

SA_25: aromatic nitroso group 4

SA_26: aromatic ring N-oxide 1

SA_27: Nitro-aromatic 75

SA_28: primary aromatic amine, hydroxyl amine and
its derived esters

52

SA_28bis: Aromatic mono- and dialkylamine 7

SA_28ter: aromatic N-acyl amine 17

SA_29: Aromatic diazo 4

SA_30: Coumarins and Furocoumarins 8

SA_31a: Halogenated benzene 16

SA_31b: Halogenated PAH 7

SA_31c: Halogenated dibenzodioxins 2

Table 7 Eight MDL descriptors selected for modeling.

MDL_ID Descriptor Code Symbol Definition

MDL005 SdsCH Sum of all (= CH -) E-State values in molecule

MDL051 SdssC_acnt Count of all (= C <) groups in molecule

MDL062 SdsN_acnt Count of all (= N) groups in molecule

MDL114 dxp9 Difference simple 9th order path chi indices

MDL130 nxch6 Number of 6-membered rings

MDL187 Gmin Smallest atom E-State value in molecule

MDL190 SHCsats Sum of hydrogen E-State on sp3 C on saturated bond

MDL210 SHBint2_Acnt Count of internal hydrogen bonds with 2 skeletal bonds between donor and acceptor
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Conclusion
The CPDB rodent carcinogenic database was used for
development of models for categorization of carcino-
genic potency. Initial preprocessing of data and selection
of data with carcinogenic potency for rats gives us con-
sistent data suitable for QSAR modeling with carcino-
genic potency response closer to human. The MDL and
Dragon software programs were applied for calculating
the molecular descriptors. The topological structure
descriptors provided a sound bases for classifying mole-
cular structures.
The CP ANN model presented in our study demon-

strated good prediction statistics on the test set of 161
compounds with sensitivity of 75%, specificity of 61%-
69% in addition to accuracy 69%-73%. A diverse external
validation set of 738 compounds confirmed the robust-
ness of our models regarding a large applicability
domain, yielding the accuracy 60.0%-61.4%, sensitivity
61.8%-64.0%, and specificity 58.4%-58.9%.
These carcinogenicity models can be used as a support

in risk assessment, for instance, in setting priorities
among chemicals for further testing.
The models at the CAESAR’s web site have free access

for public use [34].

Experimental
Internal data set used in modeling
The chemicals involved in the study belong to different
chemical classes, so called non-congeneric substances.
The work is addressed to industrial chemicals, referring
to REACH initiative. The aim is to cover chemical space
as much as possible. The initial dataset of 1481 chemi-
cals was taken from Distributed Structure-Searchable
Toxicity (DSSTox) Public Database Network http://
www.epa.gov/ncct/dsstox/sdf_cpdbas.html which was
built from the Lois Gold Carcinogenic Database (CPDB).
The initial dataset has been cleaned of all incorrect

structures, ambiguous or mixed structures, polymers,

inorganic compounds, metallo-organic compounds,
salts, complexes and compounds without well defined
structure. The obtained data and structures of chemicals
were cross-checked by at least two partner using the fol-
lowing online databases: ChemFinder [47], ChemIDPlus
[48] and PubChem Compound [49]. The final data set
of 805 chemicals, with their ID number, chemical name,
CASRN, experimental TD50 values for rat and corre-
sponding binary carcinogenicity classes are available in
Additional file 1 (Table 1SI). For each substance it is
indicated whether it belongs to training or test set.
It should be highlighted that data used in our study

were obtained from standard protocols and meet
requirements for QSAR modeling. Carcinogenicity clas-
sification criteria follow the Directive 67/548/EEC,
Annex VI, and Cancer Risk Assessment criteria pro-
posed by IARC International Agency for Research of
Cancer. Carcinogenicity hazard testing and assessment
were performed in accordance with OECD Guidelines
451 (TG 451, 1981-carcinogenicity study).
To prepare data for modeling the dataset of 805 che-

micals was subdivided into training (644 chemicals) and
test (161 chemicals) sets using the sub-sorting of chemi-
cals according to functional groups and following proce-
dure aimed to distinguish between connectivity aspects.
This part of study has been done in the Helmholtz Cen-
tre for Environmental Research - UFZ in Germany by a
partner in the CAESAR project. The sorting of the com-
pounds pointed here is implemented in the software sys-
tem ChemProp [50,51].

External data set used for validation of models
Additional 738 chemicals different from those in our
data set of 805 compounds were used as external valida-
tion set, being described by the same type of structural
descriptors as employed in our model.
To assess predictive abilities of the selected CAESAR

model a commercial database has been queried to

Table 8 Twelve Dragon descriptors selected for modeling.

Dragon Descriptor’s code Symbol Definition

DRA0107 PW5 Path/walk 5 - Randic shape index

DRA0123 D/Dr06 Distance/detour ring index of order 6

DRA0341 MATS2p Moran autocorrelation - lag 2/weighted by atomic polarizabilities

DRA0391 EEig10x Eigenvalue 10 from edge adj. matrix weighted by edge degrees

DRA0451 ESpm11x Spectral moment 11 from edge adj. matrix weighted by edge degrees

DRA0464 ESpm09d Spectral moment 09 from edge adj. matrix weighted by dipole moments

DRA0551 GGI2 Topological charge index of order 2

DRA0565 JGI6 Mean topological charge index of order6

DRA0670 nRNNOx Number of N-nitroso groups (aliphatic)

DRA0695 nPO4 Number of phosphates/thiophosphates

DRA0791 N-067 Al2-NH

DRA0802 N-078 Ar-N = X/X-N = X
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extract new chemical compounds to be tested. Lead-
scope software allows accessing some QSAR ready data-
base and the “FDA 2009 SAR Carcinogenicity - SAR
Structures” database consisting of 2090 compounds has
been extracted from the Leadscope environment in
terms of structure information and carcinogenic activity
label (based on different mammalian species) and com-
pared with the CAESAR dataset of 805 compounds [52].
The two databases in the form of sdf files as been

merged with ChemFinder and specific check to search
for duplicates has been performed. The compounds in
common between the two sources were analyzed to ver-
ify consistency in the experimental carcinogenicity class
assigned by the two sources.
A total of 655 compounds were in common and for

them the CAESAR assignment was compared with the
Leadscope one. The assignment of toxicity class for
Leadscope chemicals was based on rat data only and
chemicals have been classified as carcinogens if at least
one of the two genders (male or female rat) was labelled
in Leadscope as positive or intermediate level
carcinogen.
Based on this group of 655 compounds the concor-

dance of the two assignments was of 367 positive che-
micals and 257 non-carcinogenic ones. Only 31
compounds were classified differently (11 positive in
CAESAR dataset but negative for Leadscope and 20 in
the opposite situation) hence the overall concordance
was above 95%.
Since the concordance between the two experimental

sources is very high the Leadscope database can be con-
sidered as a reliable source of new compounds to test
the CAESAR model.
Once excluded those chemicals already present in the

CAESAR dataset it was possible to select as an external
test set 738 compounds with experimental data on rats.
Those compounds have been submitted to the CAE-

SAR model to obtain the predicted activity.

Description of carcinogenic potency
Carcinogenic potency for rats was selected as response
because such data in risk assessment [53] are often con-
sidered to be more suitable for human carcinogenicity
prediction. The term “carcinogen” generally refers to an
agent, mixture, or exposure that increases the age-speci-
fic incidence of cancer. Carcinogen identification is an
activity grounded in the evaluation of the results of
scientific research. Tumourgenic dose is accepted for
characterization of carcinogenicity. The tumourgenic
dose TD50 used in our study is defined as the tumour-
genic dose rate where 50% of the test animals got any
kind of cancer. Using other words, the TD50 is that
chronic dose rate (in mg/kg body weight/day or mmol/
kg body weight/day (mmol/kg-bw/day)) which would

give half of animal tumors within some standard experi-
ment time, the “standard lifespan” for the species [54].
Chronic oral toxicity and carcinogenicity tests are
described in “OECD Environment, Health and Safety
Publications Series on Testing and Assessment No 35
Guidance Notes for Analysis and Evaluation of Chronic
Toxicity and Carcinogenicity Studies [55].
We have accepted an assignment of carcinogenic cate-

gorical activity based on evidence for or against activity
within the species group in Target Sites of Rats (Male,
Female or Both) as provided in the CPDB Summary
Table. Hence, “active” or positive (P) or carcinogen was
assigned for a compound if one or more TD50 and the
tumor site are listed for one or more rat carcinogenicity
sex/species cell (rat male, rat female, rat both) and
“inactive” or not positive (NP) or non carcinogens was
assigned for a compound if no TD50 or tumor site are
listed and one or more “no positive results” entry for
one or more rat carcinogenicity sex/species cell, i.e. one
or more experiments are reported in the CPDB for spe-
cies, but none are positive. In other words, chemicals
were classified as not carcinogenic when the results
obtained during all animal tests on rats were assigned as
not positive (NP) (or not active) and contrary, com-
pounds were classified as positive (P) (or active) when
any of the in vivo assays gave a well defined TD50 value.
In the studied database (805 compounds), 421 chemicals
were classified as carcinogenic and remaining 384 as
non carcinogens. The distribution of carcinogens and
non carcinogens in the total, training and test sets is
presented in Table 9.

Methods
Generation and selection of descriptors
Nowadays thousands of chemical descriptors such as
constitutional, quantum chemical, topological, geometri-
cal, charge related, semi-empirical, thermodynamic and
others can be calculated for chemical structure [56,57].
In present study the following sets of descriptors for

805 compounds have been generated for modeling: 254
MDL descriptors computed using MDL QSAR version
2.2. [58] and 835 Dragon descriptors calculated by Dra-
gon professional 5.4 software [59].
To develop robust and reliable models the descriptors

space should be reduced extracting the most significant
variables. Variable selection and reduction is a delicate
problem. Before the number of descriptors was reduced,
all variables were normalized between -1 and +1. In
order to select the most relevant descriptors different
mathematical tools have been used as listed below.
Hybrid Selection Algorithm (HSA) was developed by

BioChemics Consulting SAS (BCX), France. This
method was used to select the best parameters for
classifying the chemicals by their carcinogenic potency
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(P-carcinogens and NP- non-carcinogens) among the
different molecular descriptors series. It combines the
Genetic Algorithms (GA) [60,61] concepts and a step-
wise regression [62]. In this way the descriptors space
was reduced from 254 to 8 MDL descriptors listed in
Table 7. Thus, at first, taken into consideration 245
MDL descriptors, we have got the molecular structure
information codified as topological descriptors, including
atom-type and group-type, E-State and hydrogen E-state
indices, molecular connectivity, chi indices, topological
polarity, and counts of molecular features [40-42].
Among the eight MDL descriptors there are two con-
nectivity indices (dxp9-difference simple 9th order path
chi indices and nxch6-number of 6-membered rings),
three constitutional (SdssC_acnt- count of all (= C <)
groups in molecule, SdsN_acnt- count of all (= N)
groups in molecule and SHBint2_acnt- count of internal
hydrogen bonds with 2 skeletal bonds between donor
and acceptor) and three electro-topological parameters
(SdsCH- sum of all (= CH -) E-State values in molecule,
Gmin- smallest atom E-State value in molecule,
SHCsats- sum of hydrogen E-State on sp3 C on satu-
rated bond).
Selection of Dragon descriptors was performed using

cross correlation matrix,multicolinearity and fisher
ratio techniques [63]. This part of work was done in
cooperation with CAESAR partner (Central Science
Laboratory -CSL Defra, UK). As a result descriptors

space was reduced from 835 to 12 Dragon descriptors
listed in Table 8. Among the twelve Dragon descrip-
tors there are 2 topological ones (PW5- path/walk 5 -
Randic shape index and D/Dr06- distance/detour ring
index of order 6), one 2D autocorrelation index
(MATS2p- Moran autocorrelation - lag 2/weighted by
atomic polarizabilities), two edge adjacency indices
(EEig10x- eigenvalue 10 from edge adj. matrix
weighted by edge degrees and ESpm11x- spectral
moment 11 from edge adj. matrix weighted by edge
degrees), two topological charge indices (GGI2- topolo-
gical charge index of order 2 and JGI6- mean topologi-
cal charge index of order6), two descriptors are from
“functional group count” group (nRNNOx- number of
N-nitroso groups (aliphatic) and nPO4- number of
phosphates/thiophosphates) and two descriptors are
from “atom centered fragments” group (N-067- Al2-
NH and N-078- Ar-N = X/X-N = X).

CP ANN algorithm
CP ANN algorithm was used in modeling. In this chap-
ter we give a brief description of the method employed.
CP ANN consists of two layers of neurons arranged in a
two-dimensional rectangular matrix. The architecture of
CP ANN is presented in Figure 5.
In a general way the CPANN can be explained as fol-

lows. The input or Kohonen layer contains information
on input values which are vector represented chemical
structure. The structure of s-th compound represented
by m structural descriptors or “variables” can be
expressed as Xs = (xs1, xs2, ... xsm). The output layer is
associated with the output values so called target Ts =
(ts1, ts2, ... tsj...tsp) which is a p-component vector of
zeros and ones. One dimensional target in our classifica-
tion models expresses carcinogenicity class (P-positive =
1 and NP-not positive = 0). The neural network is
trained to respond for each input structure

Table 9 The distribution of carcinogens and non-
carcinogens in total, training and test sets.

Total set Training Set Test Set

Carcinogens
(P-positive)

421 332 89

Non-carcinogens
(NP-not positive)

384 312 72

Totally 805 644 161

Figure 5 Counter propagation neural network architecture.
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representation Xs from the training set with the output
vector Outs identical to the target (class-vector) Ts.
The Kohonen input layer of the CP ANN consists of

nx × ny neurons. After the learning, the objects are orga-
nized in such a way that similar objects are situated
close to each other. It is to emphasize that only the
input values participate in this phase of learning (unsu-
pervised step). For this step no knowledge about the tar-
get vector is needed [64].
In the second step the positions of objects are pro-

jected to the output layer, where the weights are
adjusted to output values (supervised step). The trained
output layer consists of nx × ny output neurons arranged
in squared neighborhood. After the training, each weight
of the output neurons outj is a real number between 0.0
and 1.0. For the final prediction of classes the response
surface values must be again transformed into discrete
values, 0 and 1. The threshold value between 0.01 and
0.99 must be determined for each class.
More detailed description of CPANN can be found in

the literature [65-67].

Models validation
Parameters used for evaluation of classification model
A common way to evaluate the performance of classifi-
cation model (or classifier) is to employ a confusion
matrix (see Table 10) according to the method of
Cooper et al. [68]. In the confusion matrix the four dif-
ferent possible outcomes of a single prediction for two-
class problem are displayed. The rows represent the
number of entries belonging to actual (observed) class,
while the columns represent the entries belonging to
predicted class. Nnegative and Npositive are the number of
negative (non-carcinogens) and positive compounds
(carcinogens) in the dataset. TP denotes the number of
true positives, and TN denotes the number of true nega-
tives. FP (false positives) is the number of errors made

by predicting a compound of being active (carcinogen)
while it is not; FN (false negatives) is the number of
incorrectly predicted negatives (non-carcinogens).
Cooper statistics express the ability of classification

model to detect known active compounds (sensitivity),
non-active compounds (specificity), and all chemicals in
general (accuracy). See equations 1-3.
The main classification parameter is the accuracy (AC)

(or concordance). It is determined using the equation:

AC
TN TP

TN FN FP TP
= +

+ + +
(1)

AC is defined as the total number of non-carcinogens
and carcinogens correctly predicted among the total
number of compounds.
The others statistical parameters of interest are sensi-

tivity, specificity, positive predictivity, negative predictiv-
ity, false negative rate, false positive rate and etc.
Sensitivity is defined as the percentage of correctly clas-
sified carcinogens among the total number of carcino-
gens. It can be determined as the true positive rate and
can be expressed as follows:

TP rate
TP

TP FN
=

+
= Sensitivity (2)

Specificity shows the percentage of correctly classified
non-carcinogens among the total number of non-carci-
nogens and relates to true negative rate. The following
equation corresponds to specificity:

TN rate
TN

TN FP
=

+
= Specificity (3)

Training and test sets were composed for evaluation
of models.Training set represents class values for learn-
ing. Test set represents class values for evaluation.

Table 10 Confusion matrix for two class classifier (P- positive and N- negative).

Predicted

Non-carcinogens
(Negative)

Carcinogens
(Positive)

Total predicted

Observed Non-carcinogens
(Negative)

TN FP Nnegative = TN + FP

Carcinogens
(Positive)

FN TP Npositive = FN + TP

Total observed TN + FN FP + TP Ntotal = Nnegative + Npositive

*Definitions in Table 6:

TP-True positive;

TN-True negative;

FP-False positive;

FN-False negative.

Nnegative is the number of negative (non-carcinogens) in the dataset;

Npositive is the number of positive compounds (carcinogens) in the dataset;

Ntotal is total number of negative (non-carcinogens) and positive compounds (carcinogens) in the dataset;
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Hypothesis were used to establish classification in the
test set, which is compared to known one.
Internal validation
For evaluation goodness-of-fit or robustness of model
the internal performance of model based on the train-
ing set (644 compounds) was applied. Several diagnos-
tic statistical tools were implemented for
characterization the goodness-of-prediction or predict-
ability of obtained models. Firstly, statistical perfor-
mance of test set (161 compounds) was calculated.
Secondly, internal cross-validation [69,70] (CV) “leave
20% out” test was done. It was performed on a training
set of 644 compounds, so that the set was divided into
five training sets, each containing 80% of compounds,
and five test sets with 20% of compounds. The sets
were selected randomly in a way that each compound
was exactly one time a part of the test set and four
times a part of the training set.
External validation
External validation is commonly used for the predictivity
and reliability of QSAR model [71,72]. Therefore the
predictive performance of QSAR models should be eval-
uated using a validation set of compounds that were not
used to generate the model. The validation set of 738
compounds was provided by the CAESAR project part-
ner (Istituto di Ricerche Farmacologiche “Mario Negri”
(IRFMN), Milano, Italy) and implemented for validation
of models. The preparation of external validation set
was performed and described in section Materials.
In conclusion, it should be highlighted that the evalua-

tion of the classification system was done using the so-
called internal training set (644 compounds) and test set
(161 compounds), cross validation 20% out test, and
external validation test set (738 compounds). The exter-
nal test set included chemicals that were not considered
in the modeling.

Additional file 1: Table 1SI. The list of 805 chemicals from CPDBAS
used for carcinogenicity modeling.
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