Skip to main content

Table 2 Performance of the ML models on the ten-fold cross-validation of test set using LightGBM method

From: Combined machine learning models, docking analysis, ADMET studies and molecular dynamics simulations for the design of novel FAK inhibitors against glioblastoma

Fingerprint

Input

Test set

Number

R2

MAE

RMSE

CDK

1024

0.760 ± 0.012

0.417 ± 0.009

0.572 ± 0.014

CDK extended

1024

0.756 ± 0.015

0.421 ± 0.006

0.577 ± 0.018

Substructure

307

0.650 ± 0.009

0.491 ± 0.006

0.691 ± 0.009

Substructure count

307

0.709 ± 0.013

0.462 ± 0.012

0.630 ± 0.014

CDK + CDK extended

2048

0.765 ± 0.010

0.413 ± 0.011

0.565 ± 0.012

Substructure + Substructure count

614

0.710 ± 0.013

0.461 ± 0.012

0.629 ± 0.014

CDK + Substructure count

1331

0.769 ± 0.010

0.398 ± 0.009

0.562 ± 0.012

CDK extended + Substructure count

1331

0.770 ± 0.010

0.412 ± 0.009

0.560 ± 0.012

CDK + Substructure + Substructure count

1638

0.769 ± 0.010

0.398 ± 0.009

0.562 ± 0.012

CDK extended + Substructure + Substructure count

1638

0.770 ± 0.010

0.412 ± 0.009

0.560 ± 0.012

CDK + CDK extended + Substructure

2355

0.765 ± 0.010

0.416 ± 0.010

0.566 ± 0.011

CDK + CDK extended + Substructure count

2355

0.782 ± 0.010

0.398 ± 0.006

0.545 ± 0.013

CDK + CDK extended + Substructure + Substructure count

2662

0.782 ± 0.010

0.398 ± 0.006

0.545 ± 0.013