Skip to main content

Table 1 Performance of the ML models on the ten-fold cross-validation of test set using LightGBM method

From: Combined machine learning models, docking analysis, ADMET studies and molecular dynamics simulations for the design of novel FAK inhibitors against glioblastoma

Fingerprint

Input

Test set

Number

R2

MAE

RMSE

CDK

1024

0.876 ± 0.006

0.356 ± 0.010

0.500 ± 0.012

CDK extended

1024

0.881 ± 0.005

0.353 ± 0.006

0.489 ± 0.011

Substructure

307

0.785 ± 0.006

0.492 ± 0.007

0.658 ± 0.009

Substructure count

307

0.816 ± 0.006

0.452 ± 0.007

0.609 ± 0.010

CDK + CDK extended

2048

0.887 ± 0.007

0.339 ± 0.010

0.477 ± 0.014

Substructure + Substructure count

614

0.816 ± 0.006

0.452 ± 0.007

0.610 ± 0.010

CDK + Substructure count

1331

0.881 ± 0.005

0.349 ± 0.006

0.490 ± 0.010

CDK extended + Substructure count

1331

0.883 ± 0.004

0.351 ± 0.006

0.487 ± 0.008

CDK + Substructure + Substructure count

1638

0.881 ± 0.005

0.349 ± 0.006

0.490 ± 0.010

CDK extended + Substructure + Substructure count

1638

0.883 ± 0.004

0.351 ± 0.006

0.487 ± 0.008

CDK + CDK extended + Substructure

2355

0.885 ± 0.006

0.344 ± 0.009

0.482 ± 0.012

CDK + CDK extended + Substructure count

2355

0.888 ± 0.005

0.342 ± 0.006

0.476 ± 0.010

CDK + CDK extended + Substructure + Substructure count

2662

0.888 ± 0.005

0.342 ± 0.006

0.476 ± 0.010