Skip to main content

Table 3 the statistical properties of the inhibitor activity classification models of 3CLPro that were generated through the Monte Carlo method optimization for ten random splits

From: SMILES-based QSAR virtual screening to identify potential therapeutics for COVID-19 by targeting 3CLpro and RdRp viral proteins

Split

Set

n

Sensitivity

Specificity

Accuracy

MCC

\(Inhibitory \,activity=- 1.2754379 (\pm 0.0016968) + 0.0549150(\pm 0.0000625){\times}DCW\left({1,25}\right)\)

1

Training

339

0.9917

0.9916

0.9916

0.9813

Invisible training

368

0.9865

1

0.9948

0.9891

Calibration

230

0.9444

0.9778

0.9644

0.9258

Validation

231

0.8269

0.9701

0.9375

0.8739

\(Inhibitory \,activity=- 0.7655690 (\pm 0.0011840) +0.0538805(\pm 0.0000561){\times}DCW\left({1,22}\right)\)

2

Training

342

0.9835

1

0.9943

0.9874

Invisible training

358

0.9733

1

0.9893

0.9778

Calibration

233

0.9231

0.9574

0.944

0.8823

Validation

235

0.9216

0.9933

0.9643

0.9266

\(Inhibitory \,activity=- 0.4847983 (\pm 0.0012123) +0.0509742 (\pm 0.0000518){\times}DCW\left({1,23}\right)\)

3

Training

354

0.9789

1

0.992

0.983

Invisible training

341

1

0.9907

0.9938

0.9862

Calibration

238

0.9541

0.9865

0.9728

0.9443

Validation

235

0.8962

0.9533

0.9297

0.8547

\(Inhibitory \,activity=-0.5277815 (\pm 0.0011310) +0.0588772 (\pm 0.0000562){\times}DCW\left({1,25}\right)\)

4

Training

338

0.9778

1

0.9915

0.982

Invisible training

339

0.9291

0.9811

0.9617

0.918

Calibration

254

0.9072

0.9554

0.937

0.8662

Validation

237

0.9029

0.9254

0.9156

0.8283

\(Inhibitory \,activity=-0.8095880 (\pm 0.0012977) +0.0540050 (\pm 0.0000485) {\times}DCW\left({1,22}\right)\)

5

Training

341

0.9416

1

0.9765

0.9519

Invisible training

351

0.9568

0.9623

0.9601

0.9169

Calibration

239

0.9375

0.965

0.954

0.9041

Validation

237

0.9271

0.9149

0.9198

0.8358

\(Inhibitory \,activity=-0.5912367 (\pm 0.0010215) +0.0665357 (\pm 0.0000581) {\times}DCW\left({1,22}\right)\)

6

Training

336

0.9638

0.9956

0.9835

0.9659

Invisible training

336

0.9481

0.9851

0.9702

0.9381

Calibration

232

0.8969

0.9481

0.9267

0.8491

Validation

237

0.9082

0.8849

0.8945

0.7862

\(Inhibitory \,activity=-0.8271686 (\pm 0.0011930) +0.0657067 (\pm 0.0000743) {\times}DCW\left({1,17}\right)\)

7

Training

344

0.9593

0.991

0.9797

0.9556

Invisible training

338

0.9403

0.9804

0.9645

0.9257

Calibration

250

0.9048

0.9517

0.932

0.8601

Validation

236

0.9151

0.9692

0.9449

0.889

\(Inhibitory \,activity=-0.5998361 (\pm 0.0012035) +0.0646588 (\pm 0.0000541){\times}DCW\left({1,22}\right)\)

8

Training

363

0.9625

0.9951

0.9807

0.9611

Invisible training

348

0.9638

0.9905

0.9799

0.958

Calibration

242

0.8974

0.9329

0.9215

0.8224

Validation

215

0.9457

0.9431

0.9442

0.8865

\(nhibitory \,activity=-0.6242973 (\pm 0.0012742) +0.0663009 (\pm 0.0000696){\times}DCW\left({1,22}\right)\)

9

Training

338

0.9242

0.9854

0.9615

0.9193

Invisible training

336

0.9398

0.9901

0.9702

0.938

Calibration

246

0.9439

0.9424

0.9431

0.8846

Validation

248

0.8854

0.9211

0.9073

0.805

\(Inhibitory \,activity=-0.7964906 (\pm 0.0012467) + 0.0613058 (\pm 0.0000611){\times}DCW\left({1,22}\right)\)

10

Training

341

0.938

0.9906

0.9707

0.9378

Invisible training

338

0.9771

0.9807

0.9793

0.9565

Calibration

235

0.8641

0.9621

0.9191

0.8368

Validation

254

0.7714

0.9597

0.8819

0.7587